

PKZIP®/Smartcrypt®

 for IBM i®

User’s Guide
SZIU- V16R01M00E

PKWARE, Inc.

ii

PKWARE, Inc.
201 E. Pittsburgh Avenue, Suite 400
Milwaukee, WI 53204

Main office: 888-4PKWARE (888-475-9273)
Main Fax: 414-289-9789

North American Sales: 866-583-1795 or 414-289-9788
International Sales (EMEA): 44-(0)207-4702420
Sales Email: pksales@pkware.com
Support: 937-847-2687
Support: https://support.pkware.com/
Web Site: https://www.pkware.com

This edition applies to the following PKWARE Inc. licensed programs:
Smartcrypt for IBM i (Version 16, Release 1, 2018)

SecureZIP for z/OS, PKZIP for z/OS, SecureZIP for IBM i®, PKZIP for IBM i, SecureZIP for UNIX, and
SecureZIP for Windows are just a few of the members of the PKZIP family. PKWARE Inc. would like to
thank all the individuals and companies—including our customers, resellers, distributors, and technology
partners—who have helped make PKZIP the industry standard for trusted ZIP solutions. PKZIP enables our
customers to efficiently and securely transmit and store information across systems of all sizes, ranging from
desktops to mainframes.

Copyright © 1989-2021 PKWARE, Inc. All rights reserved.
Any reproduction or distribution of this content without explicit written permission of PKWARE is prohibited.

PKWARE, Smartcrypt, PKZIP and SecureZIP are registered trademarks of PKWARE, Inc. in the United
States of America and elsewhere. z/OS, i5/OS, zSeries, and iSeries are registered trademarks of IBM
Corporation. Other product names may be trademarks or registered trademarks of their respective
companies and are hereby acknowledged.

===
THIRD PARTY NOTICES

The aforementioned PKWARE products are licensed to contain the following third party programs. Any
reference to these licensed programs or other material belonging to a third party is not intended to state or
imply that such programs or material are endorsed by PKWARE, Inc. and/or currently available for use.

7/28/2021

https://support.pkware.com/
http://www.pkware.com/

 iii

Contents

PREFACE ... 1

About this Manual .. 1

Conventions Used in this Manual .. 2

Related Publications .. 2
Related IBM Publications .. 3

Related Information on the Internet ... 4

Release Summary .. 4
New Features 16.1.0 .. 4
New Features 16.0.0 .. 4
New Features 14.0.1 .. 5
New Features 14.0 ... 5
New Features 10.0.5 .. 6
New Features 10.0 ... 6
Command Changes & Defaults 16.0 .. 7
New Commands 14.0 ... 8
Command Changes & Defaults 14.0 .. 8
New Commands 10.0.5 .. 9
Command Changes & Defaults 10.0.5 ... 10
Migration Notes 14.0 .. 10
Migration Notes 10.0.5 ... 11
New Commands 10.0 ... 11
Command Changes & Defaults 10.0 .. 11
Migration Notes 10.0 .. 12
New Features 9.0 ... 12
New Commands 9.0 ... 12
Command Changes & Defaults 9.0 .. 12
New Products 8.2 ... 13
New Features 8.2 ... 13
New Commands 8.2 ... 13
Command Changes & Defaults 8.2 .. 13

User Help and Contact Information .. 14

1 GETTING STARTED ... 15

PKZIP and PKUNZIP Commands .. 15

PKPGPZ and PKPGPU Commands .. 15

iv

Basic Features of PKZIP for IBM i and Smartcrypt for IBM i 16

Initializing the License ... 16
Evaluation Period ... 16
Release Licensing .. 16
Show System Information .. 17
Applying a License Key or Authorization Code .. 17
Reporting the License .. 19

PKZIP and Smartcrypt for IBM i Grace Period .. 20
Invoking PKZIP for IBM i or Smartcrypt for IBM i ... 20

Differences from PKZIP or Smartcrypt on Other Platforms 20

Use of SAVF Method .. 21

Data Compression ... 22

ZIP Archives ... 22

Cyclic Redundancy Check .. 23
Encryption .. 23

File Selection and Name Processing ... 24
Primary File Selection Inputs .. 24
File Exclusion Inputs... 26
Input ZIP Archive Files ... 26
SPOOL File Selecting .. 26

Large Files Considerations ... 27
Large File Support Summary ... 27
Large File Support File Capacities ... 27

Cross Platform Compatibility ... 28

Restrictions .. 30

2 INTRODUCTION TO DATA SECURITY ... 31

Encryption .. 31
Data Integrity .. 32
National Security Systems Classification Support (Suite B) 32
Digital Signature Validation .. 33
Digital Signature Source Validation .. 33
Example - Sign Files and Archive with Private Keys .. 33
Example - Authenticate Signed Files and Archive ... 34

Public-Key Infrastructure and Digital Certificates .. 35
Public-Key Infrastructure (PKI) ... 35
X.509 .. 35
OpenPGP Keyrings .. 35
Digital Certificates... 36
Certificate Authority (CA) .. 36
Private Key (X.509 or OpenPGP) ... 36
Public Key (X.509 or OpenPGP) .. 36
Certificate Authority and Root Certificates ... 37

Types of Encryption Algorithms .. 37
FIPS 46-3, Data Encryption Standard (DES) ... 37
Triple DES Algorithm (3DES) ... 37
FIPS-197, Advanced Encryption Standard (AES) .. 38

 v

Comparison of the 3DES and AES Algorithms .. 38
RC4 .. 39
CAST5 (aka CAST-128) ... 39
IDEA ... 39

Key Management .. 39

Passphrases and PINS .. 40

Recipient Based Encryption ... 40

Integrity of Public and Private Keys ... 40
OEM Cryptographic Extensions ... 41

GZIP 96-bit Passphrase Encryption/Decryption ... 41
AE-2 Passphrase Encryption/Decryption ... 41

Data Encryption .. 42
Operating System Levels ... 42
Windows Compatibility ... 42

User Encryption Examples ... 43
Zip Compress File(s) and Write to an Archive File ... 43
Display the Contents of an Encrypted Archive File .. 45
Incorrect Passphrase Use .. 45
Compress File with Public Digital Certificates .. 45
Decrypting File with Private Key Certificates ... 46
Encryption Using LDAP Search for Recipients .. 46

3 ZIP FILES ... 48

“Old” ZIP Archive ... 49
“Temporary” Archive File ... 49

“New” ZIP Archive ... 49

Self-Extracting Archive.. 50

Data Format - Text Records vs. Binary Records .. 50

File Attributes ... 52

PC Shared Drives Format .. 52

4 FILE EXTRACTION PROCESS .. 53

Extracting Files to the QSYS Library File System .. 53
Authority Settings ... 54

Extracting Files to the IFS ... 55
Path Considerations ... 55
Changing the path(s) .. 55
File Type Considerations .. 55

Extracting zSeries Variable Length Records (RDW/ZDW) 56

Extracting zSeries Native IO Records .. 57
Extracting Spool Files ... 57

vi

5 IBM I FILE PROCESSING SUPPORT .. 60

QSYS (Library File System) .. 60
QSYS Summary ... 60

IFS (Integrated File System) .. 61
Directories and Current Directory ... 61
Path and Path Names .. 61
Stream Files ... 62
Other IFS Objects ... 62
File Systems in the IFS .. 62
Document Library Services File System (QDLS) ... 63
Optical File System (QOPT) ... 65
Using QSYS.LIB via the Integrated File System Interface 67
IFS Summary .. 68

SAVF .. 69
Compressing a SAVF file ... 69
Extracting Records into a SAVF file ... 69
Overwriting Current SAVF File ... 69

Compressing Spool Files .. 69
Compressing Spool Files Examples ... 71

6 IBM I PKWARE SAVE/RESTORE APPLICATION FEATURE (IPSRA) 73

Save/Restore Command Overview ... 73
Saving Data .. 74
Restoring Data .. 74
Syntax ... 74
File Names Used for Saved Data ... 75
Extended Data in Archive ... 75

Notes and Restrictions .. 76

Using OUTPUT and OUTFILE with the Save Commands 77

How to Use the Save Application Feature ... 77

How to Use the Restore Application Feature .. 78

Database Considerations for Save and Restore ... 78

Sample Jobs ... 79
iPSRA Example 1 ... 79
iPSRA Example 2 ... 79
iPSRA Example 3 ... 80
iPSRA Example 4 ... 81
iPSRA Example 5 ... 81
iPSRA Example 6 ... 82
iPSRA Example 7 ... 83

7 PKZIP COMMAND .. 84

PKZIP Command Summary with Parameter Keyword Format 84
PKZIP Command Keyword Details ... 90

 vii

8 PKUNZIP COMMAND ... 141

PKUNZIP Command Summary with Parameter Keyword Format 141

PKUNZIP Command Keyword Details .. 144

9 PKPGPZ “PKWARE OPENPGP ZIP” COMMAND 171

PKPGPZ Command Summary with Parameter Keyword Format 171

PKPGPZ Command Keyword Details ... 173

10 PKPGPU “PKWARE OPENPGP UNZIP” COMMAND 190

PKPGPU Command Summary with Parameter Keyword Format 190

PKPGPU Command Keyword Details .. 191

11 PKQRYCDB “QUERY CERT DATABASE” COMMAND 207

PKQRYCDB Command Summary with Parameter Keyword Format 207

PKQRYCDB Command Keyword Details ... 207

12 PROCESSING WITH GZIP ... 214

What Is GZIP? ... 214

Why Use GZIP? .. 214

PKZIP and Smartcrypt for z/OS Implementation Notes for GZIP 215
GZIP Restrictions ... 215
GZIP Extensions ... 215
Processing GZIP Archives ... 216
Special Note on GZIP Passphrases ... 216

Sample GZIP Processing .. 216
Compressing a file .. 216

13 PROCESSING WITH OPENPGP .. 218

Overview: OpenPGP vs. X.509 .. 218

Preparing to use OpenPGP Keys ... 219
Setting Up OpenPGP Keyrings .. 219
Configuring Contingency Keys in OpenPGP Mode .. 219
Configuration Settings Unique to OpenPGP Processing 220

Creating OpenPGP Archives .. 222

Viewing OpenPGP Files... 223

Opening OpenPGP Files.. 223
Working with OpenPGP Files Encoded with “ASCII Armor” 223

OpenPGP Support Exclusions ... 226
Signed Message Files .. 227

Examining OpenPGP File Structure with PKSCNPGP 228
Scan an OpenPGP File with PKSCNPGP ... 228

Scan an OpenPGP Keyring with PKQRYCDB ... 230

viii

14 PKWARE PARTNERLINK: SECUREZIP PARTNER 232

About SecureZIP Partner for IBM i ... 232
If You Are a Sponsor: Sign the Central Directory ... 233

Terms and Acronyms Used in This Chapter ... 233

PKWARE SecureZIP Partner Program: Overview ... 234
Decrypting and Extracting Sponsor Data (Read Mode) 234
Creating an Archive for a Sponsor ... 234

Requirements ... 235
License ... 235
Operating Environment .. 235
Configuring as a Partner for a Sponsor .. 235

Functional Overview .. 235
General Restrictions ... 235
SecureZIP Partner IVP Examples .. 236

Read Mode (UNZIP) Processing ... 237
Restrictions ... 237
Archive Authentication Settings .. 237
Decryption Certificate Selection ... 238
File Signature Authentication Certificate Selection .. 238

Write Mode (ZIP) Processing .. 238
Restrictions ... 239
Encryption Certificate Selection ... 239

15 1STEP2TAPE ARCHIVE TAPE PROCESSING .. 241

Creating archive files to tape .. 241

Reading archive files from tape: .. 242

Setting Up or Changing a Tape Device File for PKZIP or PKUNZIP 243
Output Tape Device File for PKZIP .. 243
Input Tape Device File for PKUNZIP .. 245

Sample - Creating an Archive Directly to Tape ... 246

Sample - Extracting Files from an Archive Written Directly from Tape 248

How to Copy a Tape Archive to a Disk File ... 249

A PERFORMANCE CONSIDERATIONS ... 251

Interactive Performance .. 251

Compression Type Performance .. 251

Data Type Selection ... 252
Archive Placement (IFS or in a Library) ... 252

ZIP64 Processing Considerations .. 252

Encryption Performance ... 253

Extended Attributes Selections .. 253

 ix

B CLP SAMPLES ... 255

PKSAMP01 – Override for Stdout and Stderr to an OUTQ 255

PKSAMP02 – Compress all files in TESTLIB with PKZIP 255

PKSAMP03 – Capture Last SPLF in Job .. 255

PKSAMP04 – SBMJOB to Capture all SPLF of Job .. 255

PKSAMP05 – Strong Encrypt Calling Password .. 255
PKSAMP05A – Password CL Store for PKSAMP06 .. 256

PKSAMP06 – Creating archives with 1Step2Tape Old 256

PKSAMP07 – 1Step2Tape with View/Test Tape Input Archive Files 256

PKSAMP08 – Run iPSRA to SAVLIB and Capture Resulting Spool Files 256

PKSAMP09 – Lib Encryption to Tape with Multi Steps 256
PKSAMP10 – 1Step2Tape and iPSRA Multiple Libraries 256

PKSAMP11 – Change Ownership of PKWARE Objects 257

C LIST FILES ... 258

Creating List Files .. 258
Using List Files as Input .. 259

D TRANSLATION TABLES .. 260

Standard Code Page Support with Tables .. 260
International Code Page Support ... 261

Translation Table Layout .. 262
Creating New Translation Table Members ... 262
Example of PKZTABLES (USASCII) Translation Table 263

E SPOOL FILE CONSIDERATIONS .. 264

Spool File Selections ... 264
SPLF Attributes .. 264
PDF Creation Attributes ... 265

F CONTACT INFORMATION ... 267

PKWARE, Inc. ... 267

PROBLEM REPORTING ... 267
PROBLEM REPORTING (General) ... 267
PROBLEM REPORTING (Licensing) ... 268

G OPTIONS FOR RUNNING SELF-EXTRACTING ARCHIVES 269

Command Line Self-Extractors .. 269
Usage ... 269
Options for Command Line Self-Extractors .. 270

Windows Graphical Self-Extractors ... 275

x

GLOSSARY .. 276

INDEX ... 285

 1

Preface

Smartcrypt for IBM i, like PKZIP for IBM i, is a member of the PKWARE family of
products providing high-performance data compression and data protection across
multiple operating systems and platforms.

With this release, PKWARE is changing SecureZIP's name to Smartcrypt across all
supported platforms. The new name emphasizes the strong encryption that
enterprises need to protect their data wherever that data travels. Smartcrypt for
IBM i can provide the same capabilities as SecureZIP 14.0 maintenance level 1.
When your installation of Smartcrypt is configured to match your existing SecureZIP
environment, and existing jobs will continue to run without modification.

PKZIP for IBM i provides data compression on the AS/400, iSeries, i5 and IBM i.
PKZIP for IBM i Enterprise Edition additionally includes support for passphrase-
based decryption of encrypted files, powered by trusted OpenSSL. Files created by
PKZIP for IBM i use the widely-adopted ZIP format and can be accessed on all
major platforms throughout the enterprise—from mainframe to PC.

Smartcrypt for IBM i provides data compression and data protection on the
AS/400, iSeries,i5 and IBM i. Smartcrypt for IBM i delivers high-performance data
compression and protects data with digital signatures and trusted OpenSSL
encryption, either passphrase- or certificate-based, with key lengths of up to 256
bits. Like PKZIP for IBM i, Smartcrypt for IBM i uses the widely-adopted ZIP
format and creates files that can be accessed on all major platforms throughout the
enterprise.

This manual also covers SecureZIP Partner for IBM i. SecureZIP Partner is a
special version of Smartcrypt for IBM i that provides a straightforward, secure way
for an organization to exchange sensitive information with outside partners who
perhaps do not have Smartcrypt.

SecureZIP Partner for IBM i differs from the full Smartcrypt for IBM i in that it
only extracts archives from, and only creates and encrypts archives for, a SecureZIP
Partner sponsor. Contact PKWARE for more information on SecureZIP Partner.

About this Manual
This manual provides information to help a system administrator install and use
PKZIP for IBM i or Smartcrypt for IBM i in an operational environment on
supported IBM releases of IBM i. It is assumed that people using this manual have a
good understanding of (Control Language) CL and dataset processing.

2

Conventions Used in this Manual
Throughout this manual, the following conventions are used:

• Smartcrypti is used as a shorthand to refer to both Smartcrypt for IBM
i and PKZIP for IBM i. Statements made about Smartcrypti apply to
both products. Information given specifically for Smartcrypt for IBM i or
PKZIP for IBM i applies specifically to that product.

• The terms ZIP and UNZIP are used to refer to the respective overall
processes of operating on an archive.

• The term PKZIP is often used generically to refer to any of the underlying
executable programs that process archives in PKZIP for IBM i and
Smartcrypt for IBM i. These include programs PKZIP and SECZIP, to ZIP
archives, and programs PKUNZIP and SECUNZIP, to UNZIP them. PKZIP is
also more narrowly used to refer to either the PKZIP or SECZIP program,
and PKUNZIP is often used to refer to either the PKUNZIP or SECUNZIP
program.

• The use of the Courier font indicates text that may be found in control
language (CL), parameter controls, or printed output.

• The use of italics in a command line indicates a value that must be
substituted by the user, for example, a data set name. Italics are also
used in body text to quote command names and so forth or to indicate the
title of a manual or other publication.

• The use of <angle brackets> in a command definition indicates a
mandatory parameter.

• The use of [square brackets] in a command definition indicates an optional
parameter.

• A vertical bar (|) in a command definition is used to separate mutually
exclusive parameter options or modifiers.

Program examples may show either Smartcrypt for IBM i or PKZIP for IBM i
constructs, for backward compatibility. In general, examples apply to both programs
unless the examples appear in sections of the manual that relate exclusively to
Smartcrypt features. Such sections are marked like this:

Requires Smartcrypt

Related Publications
Smartcrypti product manuals include:

• PKZIP/Smartcrypt for IBM i System Administrator's Guide - Provides
detailed information to assist the system administrator with the
installation and administrative requirements necessary to use
Smartcrypti in an operational environment.

• PKZIP/Smartcrypt for IBM i User's Guide - Provides detailed information
on the product set in OS/400, i5/OS and IBM i operating environments.
Also provided is a general introduction to data compression, SECZIP

 3

specific data compression, and an overview on how to use Smartcrypti,
SECZIP control cards, and parameters.

• PKZIP/Smartcrypt for IBM i Messages and Codes - This provides
information on the messages and codes that are displayed on the
consoles, printed outputs, and associated terminals.

Related IBM Publications
IBM manuals relating to the Smartcrypti product include:

• System Messages: This manual documents messages issued by the IBM
i operating system. The descriptions explain why the component issued
the message, provide the actions of the operating system, and suggest
responses by the applications programmer, system programmer, and/or
operator.

• OS/400 CL Programming (SC41-5721): This manual provides a wide-
range discussion of iSeries Advanced Series programming topics,
including: Control language programming, iSeries Advanced Series
programming concepts, objects and libraries, and message handling.

• OS/400 CL Reference (SC41-5722 thru SC41-5726): This manual
may be used in the iSeries Information Center to find information on the
following CL reference topics: OS/400 commands, OS/400 objects,
command description format, command parts, command syntax, about
syntax diagrams, CL character sets and values, object naming rules,
expressions in CL commands, and command definition statements.

• Integrated File System Introduction (SC41-5711): This book
provides an overview of the integrated file system includes these topics:

• What is the integrated file system?

• Why might you want to use it

• Integrated file system concepts and terminology

• Interfaces you can use to interact with the integrated file system

• APIs and techniques you can use to create programs that interact with the
integrated file system

• Characteristics of individual file systems

• File Management (SC41-5710): This manual describes the data
management portion of the Operating System/400 licensed program. Data
management provides applications with access to input and output file
data that is external to the application. There are several types of these
input and output files, and each file type has its own characteristics. In
addition, all of the file types share a common set of characteristics.

• DDS Reference (RBAF-P000): This manual contains detailed
instructions for coding the data description specifications (DDS) for files
that can be described externally. These files are the physical, logical,
display, printer, and intersystem communications functions, hereafter
referred to as ICF files. You can also reference “Data description
specifications” on the IBM i and System i Information Center.

4

Related Information on the Internet
PKWARE, Inc.

https://www.pkware.com/

IBM

o IBM i and System i Information Center -
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i

National Institute of Standards and Technology

o Computer Security Resource Center - https://csrc.ncsl.nist.gov

o Information on Key Management -
https://csrc.nist.gov/groups/ST/toolkit/index.html

OpenPGP Alliance

https://www.openpgp.org/

RFC 4880 OpenPGP Message Format

https://www.ietf.org/rfc/rfc4880.txt

Release Summary

New Features 16.1.0
Smartcrypt for IBM i Release 16.1.0 introduces the following new features and
changes:

• Support for IBM i V7R4M0 (v16.1.0b)

• A binary symmetric cipher key may now be provided for ZIP archive file
protection through a special “HEXKEY:” form of the PASSWORD command.

• Improve PGP key selection from large keyrings

• Fast PGP key selection from keyring

• New message to indicate file system is not thread safe.

• Resolve year 2038 problem

• Support OpenSSL 1.0.2L

• Minimum IBM i OS supported is V7R1M0

• No longer supporting CD/DVD Install

• All accumulated fixed issues.

New Features 16.0.0
Smartcrypt for IBM i Release 16.0.0 introduces the following new features and
changes:

https://www.pkware.com/
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i
https://csrc.ncsl.nist.gov/
https://csrc.nist.gov/groups/ST/toolkit/index.html
https://www.openpgp.org/
https://www.ietf.org/rfc/rfc4880.txt

 5

• Smartcrypt for IBM i is the designated upgrade product for the SecureZIP
product line on IBM i. The Smartcrypt product line provides the full
complement of the latest SecureZIP product capabilities.

• All accumulated fixed issues.

• Support OpenSSL 1.0.1j

• Messages and displays may have changed text (Smartcrypt replacing
SecureZIP) along with 2019 Copyright update.

• Allow hashing algorithm assignments when signing archives.

• Support creation of archive using BZIP2 compression algorithm.

• A new Smartcrypt NSSCLASSIFY setting that enables SECRET and TOP
SECRET classification associated with Suite B cryptographic algorithms as
specified by the National Institute of Standards and Technology (NIST) for
protecting National Security Systems (NSS). Suite B includes cryptographic
algorithms for encryption, digital signature, and hashing.

• Support retry when Resource Busy is detected while creating archives.

• View Smartcrypt assets encryption keys within a ZIP archive

• Support DSA 2048 Key sizes with OpenPGP files.

• Tolerate KEYID '0x' prefix for Selection of OpenPGP keys

New Features 14.0.1
SecureZIP for IBM i Release 14.0.1 introduces the following new features and
changes:

• All accumulated fixed issues.

• Support OpenSSL 1.0.1e

• Support zlib and Bzip2 compression methods for the extraction of input
OpenPGP archives from other sources

• Support creation with encryption method AE-2

• Support creation of archive using BZIP2 compression algorithm

• Support DSA 2048 Key sizes for OpenPGP signing/authentication

• The ability to use OpenPGP keyrings held in ASCII Armor format, including
both ASCII and EBCDIC character set representations

• Support for creation and extraction of archives based on the older OpenPGP
standard (RFC 2440)

• Support processing PGP "Signed Message data" with Signature armor data

• Update out-of-range check for V7R2M0 support. See Message AQZ9207.

New Features 14.0
New features available with SecureZIP for IBM i Release 14.0 include:

• All accumulated fixed issues.

6

• Informational message AQZ9207 to inform when operating environment is
out-of-range for this release.

• Support for creation and extraction of archives based on the OpenPGP
standard (RFC 4880).

• Use of OpenPGP keyrings for SecureZIP archive encryption and decryption

New features available with PKZIP for IBM i Release 14.0 include:

• All accumulated fixed issues.

• Support for creation non-encrypted archives based on the OpenPGP standard
(RFC 4880).

• Support for extraction of archives based on the OpenPGP standard (RFC
4880). Password decryption and non- encrypted only. With no
authentication.

New Features 10.0.5
New features in SecureZIPi Release 10.0.5 include:

• All accumulated fixed issues.

• UNZIP processing adds support for native block-mode processing for z/OS
MVS data sets in RECFM=F or RECFM=V (unspanned) formats.

• Support for IBM i V6R1M0 and V7R1M0.

• Improved performance when selecting IFS files in folders with 1000+
entries.

• Improved tape handling when writing archives to tape, including the
option to create a Shadow Directory file on tape.

• Ability to extract archives directly from tape –View, test and extract
archives directly from tape. Use the Shadow Directory file for efficiency.

• Support for the newer signing Sponsor Distribution Packages for
SecureZIP Partner.

• Support AE-2 password decryption.

• Support decompressing z/OS files that were compressed using z/OS
CMPSC hardware compression.

• Increase field length for INCLFILE/EXCLFILE parameters from 30
characters to 255 to provide larger path lengths for list files.

• Improved iPSRA exception handling for PKZIP and PKUNZIP.

• PKZIP’s parameter STOREPATH default was changed to be *REL in place
of *YES.

New Features 10.0
New features in SecureZIPi Release 10.0 include:

• All accumulated bug fixes

 7

• Ability to utilize IBM’s cryptographic APIs, which in some cases may
provide better performance.

• Enhanced self-extraction support for strongly encrypted archives and large
archive support on specified releases of AIX, HP/UX, Linux, Sun Solaris or
Windows

• Stronger digital signature digests with SHA-256, SHA-384 and SHA-512,
as specified in FIPS 180-2

• PKZIP for IBM i will perform passphrase-based decryption of SecureZIP
archives and associated files

• Tolerates UTF-8 file names in archive

• Accepts multi-byte (notably, UTF-8) text in certificates

• Ability to support Adopt Authority for archive files in libraries (added with
V9.0.1)

• Improved information feedback when an API error occurs

• Increased maximum spool files that can be selected

• Improved text translation performance

• Updated ERROPT parameter for PKZIP, to assist skipping files with errors
or iPSRA exceptions.

Command Changes & Defaults 16.0
The following commands have changed since version 14.0. Review each command
and parameter listed in the User Guide (UG) or Systems Administrator’s Guide (SAG)
below before activating Smartcrypt 16.0. If the default will affect your current
process you could change the defaults to accommodate an easier upgrade by using
the IBM CHGCMDDFT command.

PKZIP/PKZSPOOL

SIGNPOL() The option to assign a “Signing Hash” was added. This
specifies the hashing algorithm that is used to generate
a digital signature. It applies to the active Signing files
and archives during a ZIP run.

NSSRULES () New Parameter. The NSS rules parameter controls the
enterprise settings for adhering to their NSS process.
There are currently two option settings for NSSRULES.

ARCHTEXT () New default text for *DEFAULT is: "Smartcrypt for IBM
i".

PKUNZIP

NSSRULES () New Parameter. The NSS rules parameter controls the
enterprise settings for adhering to their NSS process.
There are currently two option settings for NSSRULES.

8

PKCFGSEC

NSSRULES () New Parameter. Define base NSS rules to control the
enterprise settings for adhering to their NSS process.

New Commands 14.0

PKPGPZ
A command similar to PKZIP used to create an OpenPGP formatted file.

PKPGPU
A command similar to PKUNZIP used to display contents or to extract an OpenPGP
formatted file.

PKARMOR
PKARMOR is utility that can encode an OpenPGP binary formatted file to a Radix-64
format (ASCII Armor) or decode a Radix-64 to a binary file.

Command Changes & Defaults 14.0
The following commands have changed since version 10.0.5. Review each command
and parameter listed in the User Guide (UG) or Systems Administration Guide (SAG)
below before activating SecureZIPi 14.0. If the default will affect your current
process you could change the defaults to accommodate an easier upgrade by using
the IBM CHGCMDDFT command.

PKZIP/PKZSPOOL

CVTTYPE () The default is changed from *SUFFIX to *NONE.

DIRNAMES () Deprecated. Parameter was never implemented.

DFTARCHREC () The default is changed from 132 bytes to 1024 bytes.

ENTPREC () New LookUp Type of *PGPDEF to support the use of an
OpenPGP keyring for encryption.

ARCHTEXT () New default text for *DEFAULT is: 'SecureZIP for IBM i'.

COMPAT () Deprecated. No longer providing the ability to build
extended data in V4 formats.

PGPDEF () New Parameter. To define public and/or private
OpenPGP keyrings with a unique handle to be referenced
in ENTPREC parameter with option *PGPKRF.

 9

ADVCRYPT () Removed the second element of this parameter. In
previous version it was either *NONE or *BSAFE to
control the encryption API. Last actual use was in V9.

PKUNZIP

CVTTYPE () The default is changed from *SUFFIX to *NONE.

DFTDBRECLN () The default is changed from bytes132 bytes to 1024
bytes.

ENTPREC () New LookUp Type of *PGPDEF to support the use of an
OpenPGP keyring for decryption.

PGPDEF () New Parameter. To define public and/or private
OpenPGP keyrings with a unique handle to be referenced
in ENTPREC parameter with option *PGPKRF.

PKCFGSEC

ENTPREC () New LookUp Type of *PGPKRF for Contingency Key that
supports the use of an OpenPGP keyring for encryption.

PGPRULE () New Parameter. Define base security rules for OpenPGP
and use of OpenPGP keyrings.

PGPKEYPUB () New Parameter. PGPKEYPUB provides the ability to
define a global OpenPGP public keyring and handle that
can be referenced with PKPGPZ ENTPREC() and PKPGPU
AUTHCHK() commands without defining a PGPDEF public
keyring for each run.

PGPKEYPVT() New Parameter. PGPKEYPVT provides the ability to
define a global OpenPGP private keyring and handle that
can be referenced with PKPGPZ SIGNER() and PKPGPU
ENTPREC() commands without defining a PGPDEF
private keyring for each run.

PGPPREC () New Parameter. The OpenPGP contingency key
parameter defines the enterprise or corporate defined
recipient which should be included as a global or
administrative access recipient when creating OpenPGP
files.

PKQRYCDB

FTYPE () A new file type (*PGPKRF) to support reading and
displaying the contents of an OpenPGP keyring stored in
the IFS.

New Commands 10.0.5
None.

10

Command Changes & Defaults 10.0.5
The following commands have changed since version 10.0.0. Review each command
and parameter listed below before activating SecureZIPi 10.0.5:

PKZIP

STOREPATH() The option default was changed from *YES to *REL.
Review Migration notes 10.0.5 for consideration when
installing this version.

PKOVRTAPF() Added new “Shadow Directory File” option that controls
the creation of a shadow directory file when writing
archives directly to tape. Default is to create “Shadow
Directory File”.

PKUNZIP

TYPARCHFL() *TAP is added as an option to specify that the archive is
to be read directly from tape using a tape device file.

 PKOVRTAPI() New Parameter to control and override attributes when
reading archives directly from tape.

PKCFGSEC

ADVCRYPT () The mode is no longer operational for PKWARE or
OpenSSL. It still is in the command for older version
compatibility. See FACENC parameter for encryption
facilities.

Migration Notes 14.0
An historical list of progressive release migration notes is provided below. PKWARE
highly recommends that consideration be made of ALL pertinent release changes in
relation to the release being replaced. Please contact PKWARE Technical Support if
you have questions relating to the applicability of any of these items.

• Release 14.0 introduces support for encryption and decryption utilizing
RFC 4880 OpenPGP key rings.

• Release 14.0 introduces support for RFC 4880 OpenPGP archive formats.
As part of input archive processing for EXTRACT, TEST and VIEW actions,
changes to the archive detection sequence have been made from a
previous version. Be aware that a change in behavior may occur when
archives containing non-standard header or trailer material are read. In
addition, when an error is detected during the initial read of the archive,
the error handling characteristics of the run may differ from prior releases.

• The Configuration File (PKCFG) format has change with new fields
therefore the PKCFGSEC command MUST be run to set all
environmental settings in place of copying the file from a previous version.

 11

Migration Notes 10.0.5
Release 10.0.5 introduces the ability to create a “Shadow Directory File” as the
default when writing archives to tape. Creating the Shadow Directory File will add
another file on tape immediately after the archive and will affect the number of files
written to tape and the file sequence numbers. If the tape sequence number control
of the files written to tape is extremely important, either change the command’s
PKOVRTAPF() options or change its defaults in the command using CHGCMDDFT.

The STOREPATH default has changed from *YES to *REL. This has the potential to
affect subsequent file extraction that targets a UNIX or Windows file system. The
ZIP archive standards document (also referred to as ‘APPNOTE’) states that the file
name must not start with a leading ‘/’. Having a leading ‘/’ can pose a security risk
by allowing users to inadvertently overwrite files in the root of the directory during
extraction. If your current processing requirements are dependent upon having a
default of *YES, use the CHGCMDDFT command to change the STOREPATH
parameter default in PKZIP and PKZSPOOL commands.

New Commands 10.0
PKCRYRUN was added for SecureZIP for i5/OS under OS V5R3M0 and above.
PKCRYRUN is a utility testing command that simulates running encryption and
hashing using specified facilities.

Command Changes & Defaults 10.0
The following commands have changed since version 9.0. Review each command and
parameter listed below before activating SecureZIPi 10.0:

PKZIP

TYPARCHFL() *XDB added as an option to specify that archive is to be
created or updated exclusively in the QSYS library file
system.

ADVCRYPT () The mode is no longer operational for PKWARE or
OpenSSL. It remains available in the command for older
version compatibility. See FACILITY parameter for
encryption facilities.

FACILITY () New parameter to control encryption and hashing
facilities or which API to use.

PKUNZIP

TYPARCHFL() *XDB added as an option to specify that archive is to be
created or updated exclusively in the QSYS library file
system.

FACILITY () New parameter to control encryption and hashing
facilities or which API to use.

PKCFGSEC

ADVCRYPT () The mode is no longer operational for PKWARE or
OpenSSL. It remains available in the command for older

12

version compatibility. See FACENC parameter for
encryption facilities.

FACENC () New parameter to control encryption facilities or which
API to use.

FACHASH () New parameter to control hashing facilities or which API
to use.

Migration Notes 10.0
Release 10 introduced newer forms of self-extractor programs (ref. SELFXTRACT
parameter for details) which support ZIP64 processing and strong decryption.
Although the older versions of the self-extractors are still available, their names have
changed. Jobs coded with the previous names will include the newer form of the self-
extraction programs in the archive.

New Features 9.0
New features in PKZIP for i5/OS and SecureZIP for i5/OS Release 9.0 include:

• 1Step2Tape Feature – The ability to create an archive directly to tape
without any disk files

• SecureZIP now supports multiple contingency keys with the use of inlist
for a type code

• Expanded maximum passphrase length from 200 to 260 alphanumeric
characters

New Commands 9.0
There are no new commands for version 9.0.

Command Changes & Defaults 9.0
The following commands have changed since version 8.1. Each command and
parameter listed below should be reviewed before activating SecureZIPi 9.0:

PKZIP

TYPARCHFL() *TAPF is added as an option to specify that archive is to
be written directly to tape.

MSGTYPE() An option is added that controls the amount of copyright
information displayed at startup. Default is *NORMAL.

PASSWORD() The key word *INLIST in the first 7 bytes indicates that
the contents following will be an inlist file description
where the passphrase will be retrieved.

TAPFOVR() The TAPFOVR command is used to control the attributes
when creating an archive directly to tape.

 13

PKUNZIP

TYPARCHFL() *XDB added as an option to specify that archive is to be
read exclusively in the QSYS library file system.

MSGTYPE() An option is added that controls the amount of copyright
information displayed at startup. Default is *NORMAL.

PASSWORD() The key word *INLIST in the first 7 bytes indicates that
the contents following will be an inlist file description
where the passphrase will be retrieved.

New Products 8.2
• The following product has been added to the PKWARE SecureZIP suite for

the i5/OS operating environment:

• SecureZIP Partner for i5/OS

New Features 8.2
New features in PKZIP for i5/OS and SecureZIP for i5/OS Release 8.2 include:

• New compression algorithms with various custom controls

• Significant performance improvements with new compression algorithms

• New ZIP64 signal constraint checks to avoid building large archives

• New default internal translation tables for EBCDIC to ADCII

• A separate input archive can be specified other than the archive file to
created. This allows an inputted archive to be preserved

• A special key word *COPY for the FILES parameter has been added that
allows a zip run that just copies files from another archive

• The ability to extract zSeries files created with RDW (EBCDIC variable
length records)

• i5/OS PKWARE Save/Restore Application feature (iPSRA)

New Commands 8.2
There are no new commands for version 8.2.

Command Changes & Defaults 8.2
The following commands have changes since version 8.1. Each command and
parameter listed below should be reviewed before activating SecureZIPi 8.2:

PKZIP

ARCHIVE() Two additional options added (1. ZIP64 check and 2.
Optional Input archive name). Defaults are backward
compatible.

14

COMPRESS() Additional options have been added. Nine (9) new
compression levels for Level and a new option for
compression method (Deflate or Deflate64). Defaults
are backward compatible.

FTRAN() Default has changed to *ISO88591. See
Upgrade/Migration notes #1.

TRAN() Default has changed to *ISO88591. See
Upgrade/Migration notes #1.

FILES() Revise to accommodate save commands for the iPSRA.

PKUNZIP

FTRAN() Default has changed to *ISO88591. See
Upgrade/Migration notes #1.

TRAN() Default has changed to *ISO88591. See
Upgrade/Migration notes #1.

RSTIPSRA() The iPSRA Restore command

User Help and Contact Information
For Licensing, please contact the Sales Division at 937-847-2374 or email
PKSALES@PKWARE.COM.

For Technical Support assistance, please contact the Product Services Division at
937-847-2687 or visit the Support Web site.

Appendix F lists the types of information needed to resolve issues with the product.

mailto:PKSALES@PKWARE.COM

 15

1 Getting Started

Smartcrypti is a broad, flexible product on the IBM i platform, allowing for
compression and decompression of files. It is fully compliant with other PKZIP-
compatible compression products running on other operating systems.

Because the PKZIP standard for text data storage is ASCII, Smartcrypti facilitates
conversion between the ASCII and EBCDIC character sets. Therefore, compressed
text files can be transferred between IBM mainframe environments and systems
using the ASCII character sets, including UNIX, DOS, and Smartcrypti.

In addition to PKZIP-format archive support, Smartcrypti can also produce and
manipulate (GNU) GZIP-format archives, (See Chapter 12), and OpenPGP archives
(See Chapter 13).

PKZIP and PKUNZIP Commands
Smartcrypti uses two main commands—PKZIP and PKUNZIP—to control its high-
performance data compression functionality. The PKZIP command launches a utility
that compresses files and places them in a ZIP format archive. PKUNZIP reverses
this process: it decompresses data in a ZIP archive created by PKZIP or another file
compression program and restores the files to their original form. Both commands
are controlled by options that allow a variety of functions to be performed.

Multiple levels of processing control are available through the use of customized
option modules, shared command lists, and individual job inputs. In addition to file
selection, features such as compression levels and performance selections can be
specified. Also, a 32-bit cyclic redundancy check (CRC) is a standard feature used to
guarantee data integrity.

A ZIP archive is platform-independent; therefore, data compressed (ZIPPED) on one
platform, for example, UNIX, can be decompressed (UNZIPPED) on another platform,
for example, IBM i OS and MVS/ESA, by using a compatible version of PKUNZIP.

PKPGPZ and PKPGPU Commands
For OpenPGP files, Smartcrypti utilizes two main commands—PKPGPZ and
PKPGPU—to control its high-performance data compression and encryption
functionality. The PKPGPZ command launches a program that
compresses/encrypts/signs a file and places it into an OpenPGP format archive.
PKPGPU reverses this process by decompressing/decrypting/authenticating data in

16

an OpenPGP archive created by PKPGPZ or another OpenPGP file created to the RFC
4880 standard and restores the file to its original form. Both commands are
controlled by options that allow a variety of functions to be performed. You must
activate the PKPGPZ and PKPGPU commands with the PKCFGSEC command before
you can use them.

Basic Features of PKZIP for IBM i and Smartcrypt for IBM i
Smartcrypti is generally compatible with PKZIP 2.x, and as such, has the following
features:

Compliance with compression programs on other platforms, including Windows,
Linux, UNIX, DOS, Smartcrypti.

• User-selected compression ratios.

• Storage capability of 65,535 files within one ZIP Archive.

• Compression of files of up to 4 gigabytes.

• A maximum ZIP archive size of 4 gigabytes.

• Data integrity assurance using 32-bit CRC error detection.

• Translation of data to a system-independent format, thus providing easy
file transfers within a mixed or varied file environment.

Smartcrypti also offers a series of extended features, such as creation of GZIP
archives, spool files support, large file support (files greater than 4 GB and files in
archive exceeding 65,535), advanced encryption, and self-extracting archives.

Initializing the License

Evaluation Period
You may obtain a key from the Sales Division to use to generate an evaluation
license that allows full use of the product for 30 days. Contact PKWARE anytime
during this period to obtain licensing to use the product beyond the initial period.

You can reach the Sales Division at 937-847-2374 or email pksales@pkware.com.

For technical support, contact the Product Services Division at 937-847-2687 or
online at the Support Web site.

When you receive the license control card information from PKWARE, you build the
license data set using the Build License program. Running the INSTPKLIC command
updates the LICENSE data set and reports the license status of Smartcrypti at your
location.

Release Licensing
Each release of Smartcrypti requires that a new license key be obtained from
Customer Service and that a new license record be generated. The new release will
fail with AQZ9077 "License Keys have invalid version setting" if the license file is
used from a previous release.

mailto:PKSALES@PKWARE.COM
https://support.pkware.com/

 17

Show System Information
To report on the status of a license at your location, you can run the environment
“WHATOSV” program by doing a program call:CALL WHATOSV. It will provide a
report similar to:

PKWARE WHATOSV Current Operating Environment Wed Jan 13 07:40:59 2021

PKWARE SecureZIP Partner Smartcrypt(R) for IBM i Version 14.0.1 (540) with build
date 2012/04/12
 Current Smartcrypt Library is PKW14061S
IBM iSeries Type 9406, Model MMA-5462
 Proc_Feature<7380> Int_Feature< >
Serial Number <010-7X8WT >, PRC Group < P30>, OS is at V71R1M0.
Installed Processors(16) - Activated Processors(16) - Max IBM i Processors(16)
POD/CoD Installed - Activated(16) Enabled/Active(00/00) Temp(00/00)
 - Pod Feature(5403)

LPAR Data: Total Number of LPARs(63)
Current Partition: Shared, Uncapped, U0D07X8WT002002
 ID(0x0D, 13) Logical Serial Number<107X8WTD >
 Processors: Current(02) Min(01) Max(02) Shared(16)
 Proc Capacity: Current(0.25) Min(0.10) Max(2.00)
 VP(02) Current Cap Shared(0.00) Uncapped Weight(1.28)

 License Information for Product ID <5761SS1>:
 Feature<5050> licensed type Users Lmt=*NOMAX Cnt=0 Peak=0
 Feature<5051> licensed type Processors Lmt=*NOMAX Cnt=16 Peak=2
Press ENTER to end terminal session.

The output of this report is what you will need to send to your reseller or PKWARE
sales representative to obtain a DEMO code.

Note: The Smartcrypti Library must be added to the library list prior to running this
program.

Please have the output of this report handy when speaking with your reseller or
account rep. You will be expected to supply the following additional information:

• Company name

• Company contact

• Phone number

• Contact email

Applying a License Key or Authorization Code
Installing the PKZIP license activation keys is done by adding the licensing
information obtained from PKWARE, Inc. into a source file member (one is provided
with distribution library call PKZLICIN) and then running the install license program
to activate.

By executing the INSTPKLIC command, the LICENSE dataset will be updated and a
report will be produced that will reflect the state of Smartcrypti at your location.

Trial activation is accomplished by first editing the member PKWARELIC and adding
the company customer record and keys supplied by PKWARE, Inc. One way of editing
the member would to use the following command with the correct library:

18

EDTF FILE(PKW14053S/PKZLICIN) MBR(PKWARELIC)

or

STRSEU SRCFILE(PKW14053S/PKZLICIN) SRCMBR(PKWARELIC)

Remember since this a source file member and you use the EDTF command that the
data will start in column 13, because the source sequence number and date stamp is
in the true columns 1 thru 12.

For example:

 EDTF FILE(PKW14053S/PKZLICIN) MBR(PKWARELIC)

 Edit File: PKW14053S/PKZLICIN(PKWARELIC)
 Record : 1 of 3 by 8 Column : 13 92 by 74
 Control :

CMD ..+....2....+....3....+....4....+....5....+....6....+....7....+....8....+.
 ************Beginning of data**************
 *LICENSED BY PKWARE, Inc 06/03/03
 55 A4CMD1NR 000014581 PKWARE Internal Demo Customer
 99 CMDOAXB1 20030703 0107X8WTP10
 ************End of Data********************

 F2=Save F3=Save/Exit F12=Exit F15=Services F16=Repeat find

Notice in this case the columns on the ruler shows column 13 for the first column of
the license data.

For example:

 STRSEU SRCFILE(PKW14053S/PKZLICIN) SRCMBR(PKWARELIC) :

 Columns . . . : 1 71 Edit PKW14053S/PKZLICIN
 SEU==> PKWARELIC
 FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7
 *************** Beginning of data *************************************
0001.00 *LICENSED BY PKWARE, Inc 06/03/03
0002.00 55 A4CMD1NR 000014581 PKWARE Internal Demo Customer
0003.00 99 CMDOAXB1 20030703 0107X8WTP10
 ****************** End of data **

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor F11=Toggle
 F16=Repeat find F17=Repeat change F24=More keys

Once you have typed or copied the license information provided by PKWARE, you will
need to save these changes by pressing F3 and exit the edited member by pressing
F3 again. Next, run the install program using the following command:

INSTPKLIC INFILE(*LIBL/PKZLICIN) INMBR(PKWARELIC) or prompt F4

 Install Smartcrypt for IBM i License (INSTPKLIC)

 Type choices, press Enter.

 Type *INSTALL *INSTALL, *VIEW
 Input Control File PKZLICIN Name, PKZLICIN
 Library name *LIBL Name, *LIBL
 Control Member pkwarelic Name, *FIRST

 19

 Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

By executing the INSTPKLIC command, the LICENSE dataset will be updated and a
report will be produced that will reflect the state of Smartcrypti at your location.

Smartcrypt(R) for IBM i Version 16.1 (710), 2021/08/15
Portions copyright (C) 1989-2021 PKWARE, Inc. All rights reserved.
PKZIP Reg. U.S. Pat. and Tm. Off. Patent No. 5,051,745; 7,793,099; 7,844,579;
 7,890,465; 7,895,434
Other patent applications pending.
Smartcrypt(R) is a trademark of PKWARE, Inc.
Machine ID = 01061B5F, Processor Group = P05, OS=V5R3M0
Rec - 1 *LICENSED BY PKWARE 05/26/06 WSS
Rec - 2 *Smartcrypt with Enterprise License
Rec - 3 57 MR6CCP2B 000015319 PKWARE, INC.
Rec - 4 99 HH6QYPKK 20100626 01061B5FP05
Evaluation Edition being installed
Smartcrypt Module - Evaluation set to expire in 31 days on 20070626
Compression - Evaluation set to expire in 31 days on 20070626
Decompression - Evaluation set to expire in 31 days on 20070626
GZIP - Evaluation set to expire in 31 days on 20070626
Enhanced Decryption - Evaluation set to expire in 31 days on 20070626
Spool Files - Evaluation set to expire in 31 days on 20070626
Large Files - Evaluation set to expire in 31 days on 20070626
Self Extracting - Evaluation set to expire in 31 days on 20070626
iPSRA Save/Restore - Evaluation set to expire in 31 days on 20070626
TapeOut IO Handler - Evaluation set to expire in 31 days on 20070626
License File PKW14053S/PKZLIC(PKZLIC) Updated successfully

Reporting the License
By using the INSTPKLIC TYPE(*VIEW) command, the current licensing settings will
be displayed.

Smartcrypt(R) for IBM i Version 16.1 (710), 2021/08/15
Portions copyright (C) 1989-2021 PKWARE, Inc. All rights reserved.
PKZIP Reg. U.S. Pat. and Tm. Off. Patent No. 5,051,745; 7,793,099; 7,844,579;
 7,890,465; 7,895,434
Other patent applications pending.
Smartcrypt(R) is a trademark of PKWARE, Inc.
Machine ID = 01061B5F, Processor Group = P05, OS=V5R3M0

A License Report requested on 0107X8WT from CPU Serial#
16.1 Product Licensed to Customer # 000014581 -PKWARE Internal Demo Customer

Compression -DEMO with 23 Days remaining (07/03/2021)
 Contact PKWARE, Inc. for Licensing

Decompression -DEMO with 23 Days remaining (07/03/2021)
 Contact PKWARE, Inc. for Licensing

GZIP -DEMO with 23 Days remaining (07/03/2021)
 Contact PKWARE, Inc. for Licensing

IFS File Handlers -DEMO with 23 Days remaining (07/03/2021)
 Contact PKWARE, Inc. for Licensing

Database File Handlers-DEMO with 23 Days remaining (07/03/2021)
 Contact PKWARE, Inc. for Licensing

Advanced Encryption -DEMO with 23 Days remaining (07/03/2021)
 Contact PKWARE, Inc. for Licensing

20

Spool Files -DEMO with 23 Days remaining (07/03/2021)
 Contact PKWARE, Inc. for Licensing

Self Extracting -DEMO with 23 Days remaining (07/03/2021)
 Contact PKWARE, Inc. for Licensing

Press ENTER to end terminal session.

PKZIP and Smartcrypt for IBM i Grace Period
PKWARE recognizes that there may be periods where the licensing environment
established by the customer is no longer valid. Circumstances such as disaster
recovery processing or the installation or upgrade of new processors will affect the
environment.

To accommodate the installation, Smartcrypti has a process that will allow you to
continue to use the product for a grace period of seven days when the established
licensing environment is no longer valid. Note that the user must have write
authority on the license dataset to invoke the grace period. This authority is only
required the first time PKZIP/PKUNZIP is run after a CPU change has occurred; it is
not required after the grace period has been successfully invoked (this is one time
per CPU).

During the grace period, error messages will be displayed on the job log and/or
display/printout for each execution of Smartcrypti. At the end of the period, if the
license is not updated, the product will no longer function for the new CPUs except to
VIEW an archive. You must contact PKWARE at pkcustomerservice@pkware.com during
the grace period to obtain licensing to allow extended use.

Invoking PKZIP for IBM i or Smartcrypt for IBM i
Five main commands control Smartcrypti functionality in the IBM i operating
environments. The commands are:

• PKZIP - Launches ZIP compression utility

• PKUNZIP - Launches ZIP extraction utility

• PKPGPZ – Launches OpenPGP compression utility

• PKPGPU – Launches OpenPGP extraction utility

• PKZSPOOL - Launches compression utility for spool files

Each of the commands can be invoked interactively, submitted for a batch run, or
used anywhere that an IBM i command can be issued.

Help panels for each command can be activated by using the F1 (help) key.

Differences from PKZIP or Smartcrypt on Other Platforms
This section covers the differences between Smartcrypti and other versions,
including versions that run on other operating systems or platforms. Most of the
differences are due to the QSYS library file type system and the IBM i object-oriented
base.

mailto:pkcustomerservice@pkware.com

 21

Attributes
(non-extended)

Various MS/DOS options support the selection of files by
file attributes such as hidden, read-only, and system.
These attributes are not meaningful on the IBM i OS file
system.

ANSI comments Because IBM i OS does not support ANSI control codes,
related options are not supported. When unzipping from an
archive, the archive comment will be displayed, but ANSI
control codes in this comment will not be masked out. This
could cause attribute changes on the IBM i display.

Archive file date
controls PKZIP

DOS options control whether the ZIP file date is updated or
retained when altering the archive. Because the last used
date on IBM i OS is not under program control or alterable
by a command, these options are not supported.

Archive Comments
PKZIP

DOS options allow editing of comments for individual files
in an archive. This version supports editing of a file’s text
description, but is not recommended for batch running, or
for a large number of files due to the interactive message
responses required.

File naming
differences

The files used in the QSYS library file system have their
own naming style. Each file associated with a library file
and members would be depicted as library/file(member).
Usually, all file names are stored as open system file
names with directories, ending with a file name. For a
detailed description and techniques see Chapter 5.

HELP PKZIP for DOS™ has options to display a list of
commands. Because Smartcrypti uses IBM i commands,
the help system is built for each command and is activated
by PF1 on each parameter.

Mixed Case File
Names

When using the IFS (Integrated File System), the file
names are case sensitive and act like other file systems
(UNIX, DOS, Windows, etc.). When using the QSYS library
file system, the file names are always in UPPER CASE.
Occasionally, when trying to update and archive (or select
from an archive), you may encounter a case sensitive
search. Use PKUNZIP view to get the exact name stored.
This would be appropriate when doing a PKZIP TYPE(
*DELETE) where the selection file would need to match.

Use of SAVF Method
At this time, only physical files with attributes of PF-DTA, PF-SRC, and SAVF in the
QSYS file system, stream files and directories in the IFS, and spool files can be
processed by Smartcrypti. Also, some special database functionality such as
triggers, file constraints, alternate collating sequence, and large object fields, are not
stored in the archives.

To overcome some of the restrictions listed above, Smartcrypti can compress and
decompress SAVF. The objects to be compressed are saved to a SAVF using SAVOBJ
or SAVLIB. The SAVF is then compressed to an archive using PKZIP. To restore the

22

data, first use PKUNZIP to re-create the SAVF, and then use RSTOBJ or RSTLIB to
restore objects from within the decompressed SAVF. SAVF are binary and only
pertain to IBM i OS.

Another solution may be to utilize the IBM i PKWARE Save/Restore Application
Feature (iPSRA) feature, where the same command can issued with the save API
based on the command defined in the FILES parameter. See Chapter 6 on the iPSRA
feature for details.

Data Compression
Because data compression techniques reduce file size, a compressed data file will use
less storage space and can be transferred in a faster, more efficient manner. A file
can be compressed (a ZIP candidate) to a compact size (ZIPPED file), and then to
use the file again, it must be uncompressed or extracted to its original size
(UNZIPPED file).

One easy data compression method eliminates repeating or redundant data by
replacing it with representative information that will be used when restoring the
data. An example of this data compression technique is the Run-Length Encoding
method, which applies to redundant data where a repeating character (the run) is
represented as a count or value (the length). The compressed form is the repeated
character with its count.

Example: B 2 2 2 2 E H H H H H H H H H

Compressed: B *4 2 E *9 H

Note: The efficiency of this method is dependent upon the amount of redundancy in
the data.

To perform a thorough compression operation, more advanced algorithms and
enhanced techniques are required. Smartcrypti uses just such methods to achieve
maximum results.

ZIP Archives
Smartcrypti is capable of storing compressed data in ZIP archives. There is no limit
to the number of archives you may create.

ZIP archive capability:

• ZIP archive refers to any valid ZIP-format file created by a PKZIP 4.x-
compatible product.

• ZIP64 refers to ZIP archives that include the ZIP64 format that can handle
more than 65,534 files and files that exceed 4 GB. (See “Large Files
Considerations.”).

• Each standard archive can store up to 65,534 files.

• Files that are over 4 GB have to be archived with GZIP or by using the
Large File Support.

• Each standard archive may contain up to 4 GB of data. ZIP64 is required
for larger archives.

 23

For each file in the archive, the following information is stored with the compressed
data:

• File name.

• File directory date and time.

• File’s initial CRC value (see Cyclic Redundancy Check).

• Method of compression used.

• Smartcrypti version required for file extraction.

• File size, uncompressed.

• File size, compressed.

Some files may contain the following additional information:

• The version of Smartcrypti that created the file.

• File attributes.

• Any comment about the file.

• Any comment about the archive.

• Platform specific attributes (see Cross Platform Compatibility).

• If encrypted and what method of encryption.

Cyclic Redundancy Check
Cyclic redundancy check (CRC) is a method used to verify the integrity of a data file
after it is restored from a ZIP archive.

Before a file is compressed, a Smartcrypti algorithm computes a 32 bit hexadecimal
value for its data. The CRC value is stored in a file that is within the ZIP archive.
When the data in the file is extracted, Smartcrypti processes it again using the
same algorithm to produce a second CRC value. Once the file is processed, the
original CRC value is compared to the new CRC value to ensure that they match.

Note: If the data is the same as its previous state, the same CRC value will be
produced. When the two CRC values are compared, and should the extracted value
not match the stored, initial value, the integrity of the file is in question and
Smartcrypti reports the results. In this case, it is possible the data was corrupted
within the ZIP Archive.

Encryption

Requires Smartcrypt

Smartcrypt for IBM i can encrypt data for security control and provide a
passphrase lockout for extracting data. Various security levels are available, with
multiple encryption algorithms. See Chapter 2 for a description of security features in
Smartcrypt for IBM i.

24

File Selection and Name Processing
This section discusses how file selection is performed for ZIP processing with
Smartcrypti. The primary commands used for ZIP processing are discussed here,
along with some overview notes and known restrictions.

This section also discusses how files are selected within an IBM i environment.
Remember, ZIP directory entries within a ZIP archive will be defined in a system-
independent format, which is not IBM i compatible.

Note: Directory entries within a ZIP archive are actually in a format compatible with
UNIX systems and have been translated into the ASCII character set. In addition, the
dataset level separators are typically set as the forward slash (“/”), not the period
(“.”) as in IBM i, although this can be controlled through command actions in
Smartcrypti.

See Chapter 5 for further information on how Smartcrypti handles file name
interchanges between IBM i and common ZIP format.

Primary File Selection Inputs
Smartcrypti will only process:

• IBM i objects of type FILE (only with attributes PF-SRC, PF-DTA, and
SAVF).

• IFS stream files (*STMR) and IFS directories(*DIR).

• Spool files.

Other objects must first be unloaded into an IBM i save file (SAVF) before they can
be processed by Smartcrypti (see: Use of SAVF Method) or use the Save
Applications data with the iPSRA feature. See Chapter 6.

The FILES parameter in both PKZIP and PKUNZIP specifies which files are to be
processed for all files except spool files (SPLF have their own selection parameters).
One or more names can be specified, and each name is in either IBM i OS QSYS
format, or IFS format, depending on F2ZTYPE settings. An asterisk may be used at
the end of the library name, file name, or member name to select names beginning
with the prefix used. To select all members of a file, *ALL may be used. To select all
files in a library *ALL may be used (as long as it is qualified by at least a library
name), for example, FILES('mylib/*ALL'). If *ALL is specified without at least a
qualifying library name, the specification is ignored and no files will be selected.

The Smartcrypti QSYS file system expands a partial file specification in several ways
to make file specification more convenient. Each file specification may consist of a
file name; a library name; a file name and member name; a library name and file
name; or a library name, file name, and member name. IBM i SAVF may also be
selected, but because a *SAVF file does not contain members, a SAVF will not be
selected if a member name was included in the file specification.

In the Integrated file system, each file specification may consist of a directory, a
path of directories, a directory and file, or a path of directories and file.

The various combinations that may be used are shown below:

 25

File
Type

File specification Expanded As Notes

QSYS library*/ library*/*all(*all) Finds all files in libraries
beginning with library.

 fileinlib *LIBL/fileinlib(*ALL) Searches library list for
all files called fileinlib.
If a matching file is
found, all of its
members will be
selected. If a SAVF is
found, it will be
selected.

 fileinlib*(mem*) *LIBL/fileinlib*(mem*) Searches library list for
all files beginning with
fileinlib. If a matching
file is found, members
beginning with mem*
will be selected. If a
SAVF is found, it will
NOT be selected
because the file
specification includes a
member name.

 library*/file* library*/file*(*ALL) Searches libraries that
begin with library prefix
and for files that begin
with file prefix. If a
matching file is found,
all of its members will
be selected. If a SAVF
is found, it will be
selected.

 library*/file*(memo*) library*/file*(mem*) Searches libraries that
begin with library prefix
and files that begin with
file prefix. If a matching
file is found, members
beginning with mem
prefix will be selected.
If a SAVF is found, it
will not be selected
because the file
specification includes a
member name.

IFS Dir/* Dir/*all Searches all files in
path DIR.

Spool
Files

N/A Uses parameters:
SPLFILE, SFUSER,
SFQUEUE, SFFORM,
SFUSRDTA,
SFSTATUS,
SFJOBNAM, and/or
SPLNBR.

26

File
Type

File specification Expanded As Notes

iPSRA Full Save Command SAV, SAVLIB,
SAVOBJ,
SAVCHGOBJ, or
SAVDLO

Note: If parameter TYPE(*DELETE) is used, then the file name format for these
names must be in MS/DOS format (that is, if CVTFLAG has not been used). See the
FILES keyword. Files may also be excluded. See the EXCLUDE keyword.

The valid parameter values for the FILES keyword are as follows:

'file specification 1' 'file specification 2'...'file_specification nn'

This is the list of one or more file specifications, separated by spaces.

For example:

mylib/myfile(prf*)

mylib/*all(*all)

By default, Smartcrypti does a match on files in the QSYS library system with no
case sensitivity and in the IFS with case sensitivity. Some IFS file systems contain
case sensitive file names. To force Smartcrypti to perform non-case sensitive file
name matching use TYPFL2ZP(*IFS2).

File Exclusion Inputs
Using similar file specification techniques as described above in the Primary file
Selection Inputs section, Smartcrypti can specify from one to many file patterns
that will be used to exclude files that were selected with the FILE parameter. The
files can be inputted into the command parameter EXCLUDE or into a text file that
can be processed by parameter EXCLFILE.

Care should be taken when using wildcards excluding inputs to ensure that FILES
and EXCLUDE parameters select the desired files.

Input ZIP Archive Files
During a FRESHEN or UPDATE request, files contained within the existing ZIP archive
are added to a candidate list. Names stored previously are used to search the system
files for viability (any file names not found in the system remain in the ZIP archive).

SPOOL File Selecting
The FILES parameter is not used to select spool files for compression, but instead
uses its own selection parameters.

There are eight positional parameters that can be specified to select the spool files:
the SPOOL FILE NAME (SPLFILE), the SPOOL FILE NUMBER (SPLNBR), the user that
created the files (SFUSER), the OUTQ that the file is residing (SFQUEUE), the form
type specified (SFFORM), the user data tag associated with the spool file
(SFUSRDTA), the status of the spool file (SFSTATUS), or the specific job name/user

 27

name/job number (SFJOBNAM). Only files that meet all of the selection values will be
selected.

If the parameter SFJOBNAM is coded, the job must exist and the parameter SFUSER
will be ignored, since it is already part of the SFJOBNAM parameter.

Large Files Considerations

Large File Support Summary
The large file support feature known as ZIP64 throughout this manual was added to
PKZIP for IBM i in release 5.6. This separately licensed feature of Smartcrypti
provides several enhancements relating to capacity, size, and performance. Some of
the key features include:

• Processing support (ZIP and UNZIP) for Archives enabled with the
standard ZIP64 formats from other platforms.

• An increased ZIP archive file capacity is raised from 65,534 to the
theoretical limit of 4,294,967,295 files.

• An increased user file size handler, raised from 4 Gigabytes minus 1 byte
(32 bit binary counter) to a theoretical limit of 9 Exabytes (64 bit binary
counter).

• An increased support for ZIP archive sizes exceeding 4 Gigabytes (same
as user file size limit).

The preceding values are given only as theoretical limits. In practice, there are
reasonable limitations due to the availability of resources along with processing
tolerances.

Note: 4 GB or Gigabyte is equal to 4,294,967,295 bytes. 9 EB or Exabyte is equal to
9,223,372,036,854,775,807 bytes.

Large File Support File Capacities
The original .ZIP file format has faithfully met the needs of computer users since it
was introduced by PKWARE in 1989. As computer technology has advanced over
time, storage capacities have increased dramatically. These increases make the
numbers and sizes of files that seemed unimaginable ten years ago a reality today.
To extend the utility of the .ZIP file format to meet these changing system needs,
PKWARE extended the .ZIP file format to support more than 65,535 files per archive
and archive sizes greater than 4 Gigabytes (GB). This is known as the ZIP64 format.

The specification for the .ZIP file format has been publicly available and distributed
by PKWARE in a file called APPNOTE.TXT. This file documents the internal data
structures and layout that define a .ZIP archive. The extensions introduced by
PKWARE fully support all the features of your existing archives and newer versions of
PKZIP that supports these new extensions will continue to read all of your current
archives.

Prior to the 5.6 version of PKZIP for IBM i, PKZIP on the IBM i OS was limited to
storing no more than 65,534 files in a .ZIP archive, and a single .ZIP archive or files
in archive could not be larger than 4 GB (4,294,967,295 bytes). The extended ZIP64

28

file format specification available since PKZIP v5.6 supports creating .ZIP archives
containing over 4 billion files and with sizes larger than 9 quintillion bytes. These are
only theoretical limits and most IBM i systems and other computer systems in
common use today do not have enough storage capacity, CPU or available memory
to create and store ZIP64 archives approaching these limits.

The practical limits imposed by a typical IBM i system in use today and configured
with various memory sizes will support compressing up to approximately 265,000
files. Compressing this number of files can take a long time, not only for the
compression process, but to manage the directories and properties of each of these
files.

Your available system resources (processor speed, DASD, memory, and other
processing) limit the performance you can expect from Smartcrypti when
processing large numbers of files or large archives. If you are compressing a large
quantity of files on an IBM i with insufficient memory or other resources you can
expect slow processing.

When compressing large files, it is a good idea to have your archives set up to be
stored in the IFS rather than in a library/file. The overhead is much less when storing
the archive in the IFS. It is even more important when updating or adding to an
archive where the temporary archive will also be processed in the IFS.

Versions of PKZIP for IBM i prior to 5.6 will not recognize these features and will be
unable to view or extract any files in your archives that are dependent on these
ZIP64 features. Also, any ZIP compatible programs you may be using from other
companies will not be able to access all of the contents of your large archives. They
may report that an archive is too large, or they may incorrectly report that the
archive has errors. To ensure access to data in your large archives, always use
genuine PKZIP/Smartcrypt from PKWARE.

Cross Platform Compatibility
Smartcrypti was designed for cross-platform use and enables you to move data
among different computer operating environments. Archives created with
PKZIP/Smartcrypt for IBM i are compatible with PKZIP for MVS,
PKZIP/SecureZIP for z/OS, PKZIP/SecureZIP for i5/OS, PKZIP for OS/400,
PKZIP/SecureZIP for UNIX, PKZIP/SecureZIP for LINUX, PKZIP for DOS,
and PKZIP/SecureZIP for Windows. All of these products use the same ZIP
archive file format and can work with each other’s archives. As a result, data can be
zipped on one platform—for example, UNIX—and unzipped onto another platform,
such as IBM i. Smartcrypti automatically converts the data between EBCDIC and
ASCII, so files prepared on the host are readable on any PC or UNIX system.

The following table lists ZIP features supported on different platforms and the
version of the ZIP file format Application Note where the features appear. In the
table, (EE) refers to PKZIP for IBM i Enterprise Edition.

 29

ZIP Feature ZIP AppNote
Version

z/OS OS400/iSeries/IBM i

Default 1.0

File represents a
volume label

1.1 Not supported Not supported

File represents a folder 2.0 Not supported Not supported

Deflate compression 2.0 2.x 2.x

Traditional encryption 2.0 2.x 2.x

Deflate64 compression 2.1 8.2 8.2

DCL Implode
compression

2.5 Not supported Not supported

File is a patched data
set

2.7 Not supported Not supported

File uses ZIP64 size
extensions

4.5 5.6 5.6

BZip2 compression 4.6 Not supported Not supported

DES encryption 5.0 SecureZIP 8.0 SecureZIP 8.1

3DES encryption 5.0 SecureZIP 8.0 SecureZIP 8.1

RC2 encryption 5.0 Not supported Not supported

RC4 encryption 5.0 SecureZIP 8.0 SecureZIP 8.1

AES encryption 5.1 PK5.5, SZ8.0

(SecureZIP only, starting
with 8.0)

PK5.5, SZ8.1

(SecureZIP only, starting
with 8.1)

DES decryption 5.0 SZ8.0, PK8.2(EE) SZ8.1, PK8.2(EE)

3DES decryption 5.0 SZ8.0, PK8.2(EE) SZ8.1, PK8.2(EE)

RC4 decryption 5.0 SZ8.0, PK8.2(EE) SZ8.1, PK8.2(EE)

AES decryption 5.1 PK5.5, SZ8.0 PK5.5, SZ8.1

Digital Signatures and
Authentication

5.1 SecureZIP 8.1 SecureZIP 8.1

Certificate encryption
using non-OAEP key
wrapping

6.1 SecureZIP 8.0 SecureZIP 8.1

Central directory
encryption (file name
encryption)

6.2 SecureZIP 8.0 SecureZIP 8.1

Certificate decryption 6.1 SZ8.0, PK11.0 SZ8.1, PK10.0

Hardware-based
encryption

n/a SecureZIP 9.0 Not Supported

Hardware-based
decryption

n/a SZ9.0, PK9.0(EE-decrypt) Not Supported

DSNTYPE retention 6.4 SZ11.1, PK11.1 Not Supported

z/OS 1.11 EAV PS-E 6.4 SZ11.1, PK11.1 Not Supported

SecureZIP version 14.0 adds support for the following OpenPGP features:

30

OpenPGP Feature z/OS OS400/iSeries/IBM i

Decryption of OpenPGP-
based files

SZ14.0, PK14.0 SZ14.0, PK14.0

Creation of OpenPGP-
based files

SZ14.0 SZ14.0

Encryption of ZIP archives
using OpenPGP keys

SZ14.0 SZ14.0

Decryption of ZIP archives
using OpenPGP keys

SZ14.0, PK14.0 SZ14.0, PK14.0

Sign OpenPGP files with
OpenPGP keys

SZ14.0 SZ14.0

Authenticate files signed
with OpenPGP keys

SZ14.0, PK14.0 SZ14.0, PK14.0

Include references to
OpenPGP public and
private keyrings in signed
or encrypted archives

SZ14.0, PK14.0 SZ14.0, PK14.0

If you want to transfer data across platforms using any other ZIP-compatible
product, you should check with the supplier first to confirm which versions of PKZIP
it is compatible with.

For more information regarding data formats, see “Data Format - Text Records vs.
Binary Records” in Chapter 3 for a discussion regarding special considerations when
transferring files between different platform types.

Restrictions
Due to various IBM i processing characteristics, the following restrictions should be
carefully reviewed to determine the best way to proceed when using Smartcrypti:

Smartcrypti in the QSYS file system will only work with objects that have an object
type of *FILE and an attribute of PF-DTA, PF-SRC, and SAVF. To process other
objects such as *PGM, *CMD, etc., use the SAVF method (see “Use of SAVF Method”
in Chapter 1).

Smartcrypti in the integrated file system (IFS) will only work with stream files
(*STRM) and directories (*DIR).

Special database functionality, such as triggers, file constraints, alternate collating
sequence, and logical files are not stored in an archive. To maintain this
functionality, use the SAVF method (see “Use of SAVF Method”).

Special database fields for large objects (LOB) are not supported. These fields
include: character large objects (CLOBs), double-byte character large objects
(DBCLOBs), and binary large objects (BLOBs). In cases where the database contains
one of these types of fields, use the SAVF Method.

Note: When creating OpenPGP archives, only one file may be stored in the archive.

 31

2 Introduction to Data Security

Requires Smartcrypt

This chapter details how Smartcrypt for IBM i can strongly encrypt data for security
control and protection. Much of the reference information in this chapter derives from the
National Institutes of Standards and Technology. The NIST Computer Security Resource
Center web site, http://csrc.ncsl.nist.gov/, contains FAQ’s and documentation relating to
computer security along with the Federal Information Processing Standard (FIPS)
documents. In addition, the PKWARE web site, WWW.PKWARE.COM, contains information
relating to security in Smartcrypt for IBM i.

The following sections describe encryption, authentication, types of algorithms in use,
information about specific mandates requiring the use of secure data and how Smartcrypt
for IBM i will secure that data.

PKZIP for IBM i provides support for password-based encryption and decryption using a
96-bit “Standard” encryption algorithm that is supported by older ZIP-compatible utilities.
PKZIP for IBM i Enterprise Edition supports the decryption of all password-based
algorithms provided in Smartcrypt for IBM i. 96-bit encryption is not supported for
OpenPGP archives.

Encryption
Encryption provides confidentiality for data. The data to be protected is called plaintext.
Encryption transforms the plaintext data into an unreadable form, called ciphertext, using
an encryption key. Decryption transforms the ciphertext back into plaintext using a
decryption key. Several algorithms have been approved in FIPS for the encryption of
general purpose data. Each of these algorithms is a symmetric key algorithm, where the
encryption key is the same as the decryption key. In order to maintain the confidentiality of
the data encrypted by a key, the key must be known only by the entities that are authorized
to access the data. These symmetric key algorithms are commonly known as block cipher
algorithms, because the encryption and decryption processes each operate on blocks
(chunks) of data of a fixed size.

FIPS 46-3 and FIPS 197 have been approved for the encryption of general-purpose data.
The protection of keys is discussed below under Key Management.

http://csrc.ncsl.nist.gov/
http://www.pkware.com/

32

Smartcrypt for IBM i uses symmetric key algorithms when encrypting user data.

Authentication is the process of validating digital signatures that may be attached to files in
an archive or to an archive’s central directory.

Authentication is a separate operation from data encryption. Whereas encryption is
concerned with preventing parties from accessing sensitive data (such as private medical or
financial information), authentication confirms that information actually comes unchanged
from the purported source.

Authenticating digitally signed data both verifies the signature and validates the signed
data.

Data Integrity
Smartcrypt uses a cyclic redundancy check (CRC) to ensure that data is successfully
transferred into and out of a ZIP archive. The CRC process creates a unique hash value
“thumbprint” from the original data stream. The thumbprint is regenerated at the receiving
end and compared with the hash of the source for equality. The thumbprint value is stored
independently of the data stream and is used during UNZIP processing to complete
validation of the data.

Smartcrypt extends the concept of the CRC in two ways for the purpose of providing a
tamper-resistant container within the ZIP archive. First, more rigorous HASH algorithms
(MD5 and SHA-1) are used (as specified by the PKCFGSEC command with the parameter
SIGNPOL) in addition to the 32-bit CRC to accurately reflect the uniqueness of the data
stream. Second, the hash value is encrypted in a digital signature using a private-key
certificate for the purpose of tamper detection after file extraction.

Note: CRC checking only applies to ZIP archives, not OpenPGP archives.

For more information regarding SHA-1 (Secure Hash Algorithm), see FIPS PUB 180-4,
describing the Secure Hash Standard, at
https://csrc.nist.gov/publications/detail/fips/180/4/final

Smartcrypt for IBM i provides the parameter SIGNERS (*ALL,*FILE, *ARCHIVE), to
initiate the creation of digital signatures within the ZIP archive. The AUTHCHK command is
used to perform a tamper check operation using the digital signature and hash.

National Security Systems Classification Support (Suite B)
National Security Systems document classifications are supported at the SECRET and TOP
SECRET levels associated with Suite B cryptographic algorithms as specified by the National
Institute of Standards and Technology (NIST). In the context of Smartcrypt for IBM i
operations, Suite B includes cryptographic algorithms for encryption, digital signature
creation and authentication, and hashing.

Smartcrypt for IBM i provides the NSSCLASSIFY setting to enable cryptographic
specification enforcement for the SECRET and TOP SECRET levels. It also provides the
NSSCHECK command to verify that input archive files conform to the specifications
associated with a designated classification.

A detailed list of supported specification attributes may be found in the NSSCLASSIFY
command section later in this manual. The basic list of specifications includes:

• AES encipher/decipher operations

• ECDSA digital signature support (ECC keys) with appropriate hash algorithms

https://csrc.nist.gov/publications/detail/fips/180/4/final

 33

Digital Signature Validation
Smartcrypt makes use of certificate-based encryption within the Public Key Infrastructure
(PKI) to generate and validate digital signatures. PKI provides an authentication chain for
certificates to guarantee that the signature was created by the purported source.
Smartcrypt supports the certificate chain authentication process by including necessary
identification information within the ZIP archive. Subsequently, the certificate(s) used for
signing can be authenticated through a complete chain of trust. To complete the chain of
trust, a root (or self-signed) certificate representing the certificate’s issuing organization is
installed on the authenticating system. This provides the receiving organization with the
authority to declare how the final trust sequence should be treated. Signatures based on
certificates from certificate authorities (CA) that are not authorized or trusted are declared
as being untrusted by Smartcrypt.

(OpenPGP keys do not have a “chain of trust”, see chapter 13.)

Additional facets of validating a certificate’s viability for use include a defined range of dates
within which a certificate may be used and whether the certificate has been declared to
have been revoked. Configurable Smartcrypt policies (EXPIRED and REVOKED attributes)
provide support to ensure that the certificates involved in authentication also adhere to
these restrictions.

Smartcrypt for IBM i provides a means to install and access the certificates necessary for
signing and authentication. The AUTHCHK command, along with configured policy settings
governs the type (archive directory or data files) and level of authentication that is to be
performed.

Digital Signature Source Validation
A final step in completing the authentication process is to ensure that the archive and/or file
data was sent from a particular source. Up to this point, using the previous two aspects of
authentication, we are certain that the archive directory and/or files were signed with a
private-key certificate that came from a trusted source (CA) and that the data stream has
not been tampered with since it was placed into the ZIP archive. However, these steps alone
do not guarantee that a different party under the same root/CA chain did not perform the
signing operation.

Smartcrypt for IBM i provides an optional parameter in the AUTHCHK command to declare
the specific party from whom the data is expected.

Example - Sign Files and Archive with Private Keys

Requires Smartcrypt

Create an archive and sign the files in the archive by two signers and then sign the archive
directory. Note that signing requires the private key.

PKZIP ARCHIVE('/myroot/pkware/CStore/Testzips/TestC03.zip')
 FILES('PKW14053S/$CONTACT') ADVCRYPT(AES256)
 TYPARCHFL(*IFS) TYPFL2ZP(*DB)
 ENTPREC((*DB 'EM=PKTESTDB3@nowhere.com')
 (*DB 'CN=PKWARE Test4'))
 SIGNERS((*FILE *MBRSET 'pktestdb3.p12' (PKWARE))
 (*ALL *MBRSET 'pktestdb4.p12' (PKWARE)))

34

Scanning files in *DB for match ...
2 Encryption Recipients processed
Encryption Recipients List:
--CN=PKWARE Test3 EMail=PKTESTDB3@nowhere.com
--CN=PKWARE Test4 EMail=PKTESTDB4@nowhere.com
2 File Signers processed
File Signers List:
--CN=PKWARE Test4 EMail=PKTESTDB4@nowhere.com
--CN=PKWARE Test3 EMail=PKTESTDB3@nowhere.com
1 Archive Signer processed
Archive Signer List:
--CN=PKWARE Test4 EMail=PKTESTDB4@nowhere.com
Found 1 matching files
Compressing PKW140XXS/$CONTACT($CONTACT) in TEXT mode
Add PKW140XX.S/$CONTACT/$CONTACT -- Deflating (80%) encrypt(AES 256Key)
Smartcrypt Compressed 1 files in Archive /myroot/pkware/CStore/Testzips/TestC03.zip
Smartcrypt Completed Successfully

Example - Authenticate Signed Files and Archive

Requires Smartcrypt

When doing a basic view of the newly signed archive, notice that only the archive directory
signatures are validated. To validate the signature of the files would require a TYPE(*TEST).

 PKUNZIP ARCHIVE('/myroot/pkware/CStore/Testzips/TestC03.zip')
 TYPE(*VIEW) TYPARCHFL(*IFS) TYPFL2ZP(*DB)
 AUTHCHK((*ARCHIVE *MBRSET 'pktestdb4.crt')) AUTHPOL(*WARN (*ALL))

1 Archive Signer processed
Archive: /myroot/pkware/CStore/Testzips/TestC03.zip 7053 bytes 1 file

 Length Method Size Ratio Date Time CRC-32 Name
 -------- ------ ------- ----- ---- ---- ------ ----
 5451 Defl:F 1702 69% 01-11-10 13:34 f091572d !PKW140XX.S/$CONTACT/$CONTACT
 -------- ------- ---- -------
 5451 1702 69% 1 file
Archive has been Digitally Signed.
Archive was signed by "PKWARE Test4" and verified
SecureUNZIP extracted 0 files
SecureUNZIP Completed Successfully

When the files in the archive are tested or extracted, the archive signature is validated first
and then, after each file has been tested, the file’s signatures are tested. If no AUTHCHK
parameter is entered, all signatures are validated.

 PKUNZIP ARCHIVE('/myroot/pkware/CStore/Testzips/TestC03.zip')
 TYPE(*TEST) TYPARCHFL(*IFS) TYPFL2ZP(*DB)
 ENTPREC((*DB 'CN=PKWARE Test3' 'PKWARE'))

1 Encryption Recipients processed
UNZIP Archive: /myroot/pkware/CStore/Testzips/TestC03.zip
Searching Archive /myroot/pkware/CStore/Testzips/TestC03.zip for files to extract
Archive was signed by "PKWARE Test4" and verified
Testing: PKW140XX.S/$CONTACT/$CONTACT
File was signed by "PKWARE Test4" and verified
File was signed by "PKWARE Test3" and verified
PKW140XX.S/$CONTACT/$CONTACT tested OK
No errors detected in compressed data of /myroot/pkware/CStore/Testzips/TestC03.zip.

 35

SecureUNZIP Completed Successfully

Public-Key Infrastructure and Digital Certificates

Public-Key Infrastructure (PKI)
Use of digital certificates for encryption and digital signing relies on a combination of
supporting elements known as a public-key infrastructure (PKI). These elements include
software applications such as Smartcrypt that work with certificates and keys as well as
underlying technologies and services.

The heart of PKI is a mechanism by which two cryptographic keys associated with a piece of
data called a certificate are used for encryption/decryption and for digital signing and
authentication. The keys look like long character strings but represent very large numbers.
One of the keys is private and must be kept secure so that only its owner can use it. The
other is a public key that may be freely distributed for anyone to use to encrypt data
intended for the owner of the certificate or to authenticate signatures.

How the Keys Are Used
With encryption/decryption, a copy of the public key is used to encrypt data such that only
the possessor of the private key can decrypt it. Thus anyone with the public key can encrypt
for a recipient, and only the targeted recipient has the key with which to decrypt.

With digital signing and authentication, the owner of the certificate uses the private key to
sign data, and anyone with access to a copy of the certificate containing the public key can
authenticate the signature and be assured that the signed data really proceeds unchanged
from the signer.

Authentication has one additional step. As an assurance that the signer is who he says he
is—that the certificate with Bob’s name on it is not fraudulent—the signer’s certificate itself
is signed by an issuing certificate authority (CA). The CA in effect vouches that Bob is who
he says he is. The CA signature is authenticated using the public key of the CA certificate
used. This CA certificate too may be signed, but at some point the trust chain stops with a
self-signed root CA certificate that is simply trusted. The PKI provides for these several
layers of end-user public key certificates, intermediate CA certificates, and root certificates,
as well as for users’ private keys.

X.509
X.509 is an International Telecommunication Union (ITU-T) standard for PKI. X.509
specifies, among other things, standard formats for public-key certificates. A public-key
certificate consists of the public portion of an asymmetric cryptographic key (the public
key), together with identity information, such as a person’s name, all signed by a certificate
authority. The CA essentially guarantees that the public key belongs to the named entity.

OpenPGP Keyrings
As defined by RFC 4880, paragraph 3.6 - Keyrings

“A keyring is a collection of one or more keys in a file or database. Traditionally, a
keyring is simply a sequential list of keys, but may be any suitable database. It is

36

beyond the scope of this standard to discuss the details of keyrings or other
databases.”

OpenPGP keys are similar to X.509 keys in that they are represented as a public and private
key pair and contain identify information such as a name and email address. They differ
from X.509 in that there is no hierarchy of trust as there is with X.509 Certificate
Authorities. Rather, there is a distributed web of trust.

Smartcrypt for IBM i supports OpenPGP keyring files in files stored on the IFS. These are
separated into public (only) and secret (both secret and matching public) key sets.

See the PKOPGP01 member in QCLSRC for an example.

Digital Certificates
A digital certificate is a special message that contains a public key with identifying
information about the owner, such as the owner’s name and perhaps email address. An
ordinary, end-user digital certificate is digitally signed by the CA that issued it to warrant
that the CA issued the certificate and has received satisfactory documentation that the
owner of the certificate is who he says he is. This warrant, from a trusted CA, enables the
certificate to be used to support digital signing and authentication, and encryption of data
uniquely for the owner of a certificate.

For example, Web servers frequently use digital certificates to authenticate the server to a
user and create an encrypted communications session to protect transmitted secret
information such as Personal Identification Numbers (PINs) and passphrases.

Similarly, an email message may be digitally signed, enabling the recipient of the message
to authenticate its authorship and that it was not altered during transmission.

To use PKI technology in Smartcrypt for IBM i for encryption and to attach digital
signatures, you must have a digital certificate.

Certificate Authority (CA)
A certificate authority (CA) is a company (usually) that, for a fee, will issue a public-key
certificate. The CA signs the certificate to warrant that the CA issued the certificate and has
received satisfactory documentation that the owner of the new certificate is who he says he
is.

Private Key (X.509 or OpenPGP)
A private key is used to decrypt data encrypted with the associated public key and to attach
digital signatures.

A private key must be accessible solely by the owner of the certificate because it represents
that person and provides access to encrypted data intended only for the owner.

Smartcrypt for IBM i uses a private key maintained in X.509 PKCS#12 format and an
OpenPGP private key from a secret keyring. In either case, the private key cannot be
accessed unless a passphrase is entered for each Smartcrypt decryption or signing request.

Public Key (X.509 or OpenPGP)
A public key consists of the public portion of an asymmetric cryptographic key in a
certificate that also contains identity information, such as the certificate owner’s name.

 37

The public key is used to authenticate digital signatures created with the private key and to
encrypt files for the owner of the key’s certificate.

Certificate Authority and Root Certificates
End entity certificates and their related keys are used for signing and authentication. They
are created at the end of the trust hierarchy of certificate authorities. Each certificate is
signed by its CA issuer and is identified in the “Issued By” field in the end certificate. In
turn, a CA certificate can also be issued by a higher level CA. Such certificates are known as
intermediate CA certificates. At the top of the issuing chain is a self-signed certificate known
as the root.

Smartcrypt for IBM i uses public-key certificates in PKCS#7 format. The intermediate CA
certificates are maintained independently from the ROOT certificates.

For examples using digital certificate encryption/decryption see User Encryption
Examples.

Types of Encryption Algorithms

FIPS 46-3, Data Encryption Standard (DES)
The Federal Information Processing Standards (FIPS) specification 46-3 formerly specified
the Data Encryption Standard (DES) algorithm for use in Federal government applications.
In 2004, the specification was changed such that DES is no longer approved for Federal
government applications.

Triple DES Algorithm (3DES)
Triple DES is a more recent algorithm related to DES. Triple DES is a method for encrypting
data in 64-bit blocks using three 56-bit keys by combining three successive invocations of
the DES algorithm.

ANSI X9.52 specifies seven modes of operation for 3DES and three keying options:

• the three keys may be identical (one key 3DES),

• the first and third key may be the same but different from the second key (two
key 3DES), or

• all three keys may be different (three key 3DES).

One key 3DES is equivalent to DES under the same key; therefore, one key 3DES, like DES,
has not been approved since 2004.

While two key 3DES (also known as 3DES-122) provides more security than one key 3DES
(or DES), its use is deprecated for FIPS after 2010. Three key 3DES achieves the highest
level of security for 3DES. NIST recommends the use of three different 56-bit keys in Triple
DES for Federal Government sensitive/unclassified applications.

Smartcrypt for IBM i uses three key 3DES when Triple DES is selected as the data
encryption algorithm.

38

FIPS-197, Advanced Encryption Standard (AES)
The Advanced Encryption Standard (AES) encryption algorithm specified in FIPS 197 is the
result of a multiyear, worldwide competition to develop a replacement algorithm for DES.
The winning algorithm (originally known as Rijndael) was announced in 2000 and adopted in
FIPS 197 in 2001.

The AES algorithm encrypts and decrypts data in 128-bit blocks, with three possible key
sizes: 128, 192, or 256 bits. The nomenclature for the AES algorithm for the different key
sizes is AES-x, where x is the size of the AES key. NIST considers all three AES key sizes
adequate for Federal Government sensitive/unclassified applications.

Please see https://www.nist.gov/news-events/news/2000/10/commerce-department-
announces-winner-global-information-security, a press release recapping NIST’s position

Smartcrypt for IBM i uses AES as the default encryption algorithm.

Comparison of the 3DES and AES Algorithms
Both the 3DES and AES algorithms are considered to be secure for the foreseeable future.
Below are some points of comparison:

• 3DES builds on DES implementations and is readily available in many
cryptographic products and protocols. The AES algorithm is new; although many
implementers are quickly adding the algorithm to their products, and protocols
are being modified to incorporate the algorithm, it may be several years before
the AES algorithm is as pervasive as 3DES.

• The AES algorithm was designed to provide better performance (e.g., faster
speed) than 3DES.

• Although the security of block cipher algorithms is difficult to quantify, the AES
algorithm, at any of the key sizes, appears to provide greater security than
3DES. In particular, the best attack known against AES-128 is to try every
possible 128-bit key (i.e., perform an exhaustive key search, also known as a
brute force attack). By contrast, although three key 3DES has a 168-bit key,
there is a “shortcut” attack on 3DES that is comparable, in the number of
required operations, to performing an exhaustive key search on 112-bit keys.
However, unlike exhaustive key search, this shortcut attack requires a lot of
memory. Assuming that such shortcut attacks are not discovered for the AES
algorithm, the uses of the AES algorithm may be more appropriate for the
protection of high-risk or long-term data.

• The smallest AES key size is 128 bits; the recommended key size for 3DES is 168
bits. The smaller key size means that fewer resources are needed for the
generation, exchange, and storage of key bits.

• The AES block size is 128 bits; the 3DES block size is 64 bits. For some
constrained environments, the smaller block size may be preferred; however, the
larger AES block size is more suitable for cryptographic applications, especially
those requiring data authentication on large amounts of data.

See https://www.nist.gov/news-events/news/2000/10/commerce-department-announces-
winner-global-information-security for a press release describing NIST’s position on the two
algorithms.

With a block cipher algorithm, the same plaintext block will always encrypt to the same
ciphertext block whenever the same key is used. If the multiple blocks in a typical message

https://www.nist.gov/news-events/news/2000/10/commerce-department-announces-winner-global-information-security
https://www.nist.gov/news-events/news/2000/10/commerce-department-announces-winner-global-information-security
https://www.nist.gov/news-events/news/2000/10/commerce-department-announces-winner-global-information-security
https://www.nist.gov/news-events/news/2000/10/commerce-department-announces-winner-global-information-security

 39

were to be encrypted separately, an adversary could easily substitute individual blocks,
possibly without detection. Furthermore, data patterns in the plaintext would be apparent in
the ciphertext. Cryptographic modes of operation have been defined to alleviate these
problems by combining the basic cryptographic algorithm with a feedback of the information
derived from the cryptographic operation.

FIPS 81, DES Modes of Operation, defines four confidentiality (encryption) modes for the
DES algorithm specified in FIPS 46-3: the Electronic Codebook (ECB) mode, the Cipher
Block Chaining (CBC) mode, the Cipher Feedback (CFB) mode, and the Output Feedback
(OFB) mode.

Smartcrypt for IBM i uses Cipher Block Chaining for data encryption.

RC4
The RC4 algorithm is a stream cipher designed by Rivest for RSA Security. It is a variable
key-size stream cipher with byte-oriented operations. The algorithm is based on the use of
a random permutation. Analysis shows that the period of the cipher is overwhelmingly likely
to be greater than 10100. Eight to sixteen machine operations are required per output byte,
and the cipher can be expected to run very quickly in software. Independent analysts have
scrutinized the algorithm and it is considered secure.

RC4 is used for secure communications, as in the encryption of traffic to and from secure
web sites using the SSL protocol.

CAST5 (aka CAST-128)

OpenPGP archive processing only

RFC 2144 defines a suite of CAST-128 algorithms with the potential of varying key lengths,
up to 128 bits.

Smartcrypt for IBM i offers support for this algorithm in the 128-bit key form specified by
OpenPGP RFC 4880.

IDEA

OpenPGP archive processing only

The International Data Encryption Algorithm (IDEA) is a block cipher designed by James
Massey and Xuejia Lai. This algorithm was used in Pretty Good Privacy v2.0. IDEA is an
optional algorithm in the OpenPGP standard, RFC 4880.

Smartcrypt for z/OS can decrypt files encrypted explicitly with this algorithm in the form
specified by OpenPGP RFC 4880. Files using the PGP v2.6 format are not supported.

Key Management
The proper management of cryptographic keys is essential to the effective use of
cryptography for security. Keys are analogous to the combination of a safe. If the
combination becomes known to an adversary, the strongest safe provides no security

40

against penetration. Similarly, poor key management may easily compromise strong
algorithms. Ultimately, the security of information protected by cryptography directly
depends on the strength of the keys, the effectiveness of mechanisms and protocols
associated with keys, and the protection afforded the keys.

Cryptography can be rendered ineffective by the use of weak products, inappropriate
algorithm pairing, poor physical security, and the use of weak protocols. All keys need to be
protected against modification, and secret and private keys need to be protected against
unauthorized disclosure. Key management provides the foundation for the secure
generation, storage, distribution, and destruction of keys. Another role of key management
is key maintenance, specifically, the update/replacement of keys.

Further information is available on key management at the NIST Computer Security
Resource Center web site: http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html

Passphrases and PINS
FIPS 112, Password Usage, provides guidance on the generation and management of
passphrases (passwords) that are used to authenticate the identity of a system user and, in
some instances, to grant or deny access to private or shared data. This standard recognizes
that passphrases are widely used in computer systems and networks for these purposes,
although passphrases are not the only method of personal authentication, and the standard
does not endorse the use of passphrases as the best method.

The passphrase used to encrypt a file with Smartcrypt may be from 1 to 260 characters in
length. Different passphrases may be used for various files within a ZIP archive, although
only one passphrase may be specified per run.

The passphrase is not stored in the ZIP archive and, as a result, care must be taken to keep
passphrases secure and accessible by some other source.

Recipient Based Encryption
Passphrase-based encryption depends on both the sender and receiver knowing, and
providing intellectual input (the passphrase) in clear text. The passphrase is used to derive
a binary master session key for each decryption run. No key information is kept within the
ZIP archive, so both parties must retain the passphrase in an external location.

Recipient-based encryption provides a means by which the master session key (MSK)
information can be hidden, protected, and carried within the ZIP archive. This is done by
using technique known as digital enveloping with public key encryption. The technique
requires that the creating process have a copy of the recipient's public key digital certificate,
which is used to protect and store the MSK. In addition, the receiving side must have a copy
of the recipient's private key digital certificate. With these two pieces of information in
place, there is no need for users to retain or recall a passphrase for decryption.

Integrity of Public and Private Keys
Public and private keys must be managed properly to ensure their integrity. The key owner
is responsible for protecting private keys. The private signature key must be kept under the
sole control of the owner to prevent its misuse. The integrity of the public key, by contrast,
is established through a digital certificate issued by a certificate authority (CA) that

http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html

 41

cryptographically binds the individual’s identity to his or her public key. Binding the
individual’s identity to the public key enables the key to be reliably used, for example, to
authenticate signatures created with the corresponding private key.

PKI includes the ability to recover from situations where an individual’s private signature
key is lost, stolen, compromised, or destroyed. This is done by revoking the digital
certificate that contains the private signature key’s corresponding public key (discussed
further below). The user then creates or is issued a new public/private signature key pair
and receives a new digital certificate for the new public key.

OEM Cryptographic Extensions
In addition to the fully supported cross platform cryptographic services provided across the
PKWARE product line, some additional extensions have been provided within Smartcrypti
to further assist with protected data exchanges.

GZIP 96-bit Passphrase Encryption/Decryption
Smartcrypti provides an extension to standard GZIP processing to support basic
passphrase-based encryption and decryption support.

Operating characteristics are as follows:

• Passphrase value processing is required

• ADVCRYPT(ZIPSTD) is the only supported algorithm

• No certificate-based encryption/decryption processing is supported

• No digital signature support is available

• Encrypted GZIP files are supported between the following products:

o PKZIP for MVS

o PKZIP and SecureZIP for zSeries

o PKZIP and SecureZIP for z/OS

o PKZIP for OS/400

o PKZIP and SecureZIP for iSeries

o PKZIP and SecureZIP for IBM i

o PKZIP and SecureZIP for IBM i

AE-2 Passphrase Encryption/Decryption
• Smartcrypti provides an extension to support the decryption of files held within

a ZIP archive encrypted using the AE-2 algorithm used by other vendors, such as
WinZip and 7-Zip.

• Operating decryption characteristics are as follows:

o AE-2 with key strengths of 128, 192 or 256 are supported

o AE-2 v1 and v2 implementations are supported

o Passphrase value processing is required

42

o No certificate-based encryption/decryption processing is provided

o No digital signature support is available

• Smartcrypti support creating AE-2 (AES256 only) encrypted files using the
parameter/option of ADVCRYPT(AE_2).

Data Encryption
Smartcrypt for IBM i security functions include strong encryption tools using OpenSSL and
IBM software cryptographic facilities. Smartcrypt for IBM i provides the option for
passphrase encryption using DES, RC4, 3DES and AES.

Smartcrypt for IBM i uses a multi-layer key generation process, based on a user-specified
passphrase of up to 260 characters, and/or a user’s digital certificate, that creates a unique
internal key for each file being processed. In addition, the same passphrase will result in a
different system generated key for each file.

Smartcrypt for IBM i also implements the use of Cipher Block Chaining (CBC) to further
enhance industry standard encryption algorithms. This feature ensures that each block of
data is uniquely modified, further protecting the data from fraudulent access.

Smartcrypt for IBM i encryption is activated through the use of the PASSWORD and
ENTPREC parameters. If a value is present for either setting, whether through commands or
default settings, then encryption will be attempted in accordance with other settings (for
example, -ADVCRYPT); however, if ADVCRYPT(*NONE) is specified, then encryption will be
bypassed.

Operating System Levels
V5R1M0 or above is required to run certificate-based operations.

Windows Compatibility
When using OpenSSL AES encryption with recipients, there is a cross-system compatibility
issue to be addressed by the user community. Windows operating systems running pre-
Windows XP may experience a decryption problem depending on the state of the private-
key certificate on the workstation. During the Windows certificate import process, a dialog
check-box "Mark the private key as exportable" may be selected. If this option was not
selected, then Windows will not allow an AES encrypted file to be decrypted unless the
master session key was wrapped with 3DES.

The setting of the parameter is enterprise wide and is set using the PKCFGSEC command.
When turned on, the MSK3DES flag is set in the NDH/DIB; indicating that the master
session key information is protected with 3DES when recipients are specified.

PKZIP for Windows has a variance in processing for 6.0 and 7.x due to OAEP processing.
PKZIP for Windows 5.0 through 6.0 used OAEP processing. However, that was found to be
incompatible with Smartcards, so 6.1 and above began setting the NO_OAEP flag in the
NDH/DIB flags and stopped creating OAEP encryption-mode files.

Smartcrypt for IBM i will always set NO_OAEP, therefore PKZIP for Windows 5.0 - 6.0 will
not be able to read recipient-based files from the large platforms.

 43

Smartcrypt for IBM i should be able to detect whether the NO_OAEP flag is set and
successfully extract either. No change in logic is required within the Smartcrypt high-level
code, but the low-level EVTCERTD code should handle the switch based on the flag.

What is File Name Encryption?
Someone who cannot decrypt the contents of an archive may still be able to infer sensitive
information just from the unencrypted names of files. To prevent this, you can encrypt the
names of files in addition to their contents. Encrypted file names can be viewed in the
clear—that is, unencrypted—only when the archive is opened by an intended recipient, if the
archive was encrypted using a recipient list, or by someone who has the passphrase, if the
archive was encrypted using a passphrase.

Smartcrypt for IBM i encrypts file names using your current settings for (strong)
encryption method and algorithm. File names can be encrypted using either strong
passphrase encryption or a recipient list (or both). You must use one of the strong
encryption methods: you cannot encrypt file names using traditional, ADVCRYPT(ZIPSTD),
which uses a 96-bit key.

Encrypting names of files and folders in an archive encrypts and hides a good deal of other
internal information about the archive as well. To encrypt file names, Smartcrypt for IBM i
encrypts the archive's central directory, where virtually all such metadata about the archive
is stored. Be aware, however, that archive comments are not encrypted even when you
encrypt file names. Do not put sensitive information in an archive comment.

User Encryption Examples
Below are examples of how to invoke encryption processing using PKZIP commands.

Zip Compress File(s) and Write to an Archive File
This is the main PKZIP compression screen. Here you specify the method and mode of
encryption.

 File Compression (PKZIP)

 Type choices, press Enter.

 Archive Zip File name '/yourpath/encryption/as400.des3.zip'

 List Include file or pattern . . '/yourpath/encryption/*.txt'
 + for more values

 Type of processing *ADD *ADD, *UPDATE, *FRESHEN ..
 Compression Level *SUPERFAST *FAST, *NORMAL, *MAX...
 File Types *DETECT *DETECT *TEXT *BINARY
 Advanced Encryption :
 Method > 3des ZIPSTD, AES128, AES192...
 Mode >NOTUSED PKWARE, NOTUSED

 More...
 F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
 F13=How to use this display F24=More keys
 Parameter ARCHIVE required.

Placing the cursor on the “Method” and pressing F4 presents the next screen that allows you
to select one of the encryption methods to use.

44

 Specify Value for Parameter ADVCRYPT

 Type choice, press Enter.
 Method > 3DES

 ZIPSTD
 AES128
 AES192
 AES256
 3DES
 DES
 RC4-128
 AE_2
 CAST5

When the next screen appears if you do not enter a passphrase no encryption processing is
completed on the file(s) to be archived. If you desire encryption, you must enter the
passphrase twice; once in the Archive Passphrase and again in the Verify Passphrase.

 File Compression (PKZIP)

Type choices, press Enter.

Archive Passphrase

Verify Passphrase

Archive File Type *ifs *DB, *IFS
Files to Zip Type *ifs *DB, *IFS, *IFS2, *DBA, *SPL
Before/After Selection *NO *NO, *BEFORE, *AFTER
Date for Selection 0 Date mmddyyyy
File Name actions *SUFFIX *NONE, *DROP, *SUFFIX
External Conversion Flags . . . *NONE Character value, *NONE
Create Self Extract Archive . . *MAINTAIN *MAINTAIN, WINDOWS, AIX...
 Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys

Following is the output of the PKZIP run.

Scanning files in *IFS for match ...
Found 2 matching files
Compressing /yourpath/encryption/appnote.txt in BINARY mode
Add /yourpath/encryption/appnote.txt -- Deflating (69%) encrypt(3DES)
Compressing /yourpath/encryption/readme.txt in BINARY mode
Add /yourpath/encryption/readme.txt -- Deflating (58%) encrypt(3DES)
PKZIP Compressed 2 files in Archive /yourpath/encryption/as400.des3.zip
PKZIP Completed Successfully

Commands generated from the PKZIP screen using the retrieve key after the PKZIP run.

 Command Entry COSMOS
 Request level: 4
 Previous commands and messages:

 (No previous commands or messages)

 Bottom
 Type command, press Enter.
 ===> PKZIP ARCHIVE('/yourpath/encryption/as400.des3.zip')
FILES('/yourpath/encryption/*.txt') ADVCRYPT(3DES) PASSWORD() VPASSWORD() TYPARCHFL(*IFS)
TYPF

 45

Display the Contents of an Encrypted Archive File
When the files within an archive have strong encryption, the “!” (bang) character is placed
in front of the file name to inform you that you must have the correct passphrase or private
key certificate to view or extract the file. Files that are encrypted with the old standard (96
bit) password encryption will have the “+” character placed in front of the file name.

 File Extraction (PKUNZIP)

Type choices, press Enter.

Archive Zip File name '/yourpath/encryption/as400.des3.zip'

List Include file or pattern . . *ALL
 + for more values

Type of processing *VIEW *VIEW, *EXTRACT, *NEWER...
File Types *DETECT *DETECT *TEXT *BINARY ...

 Archive: /yourpath/encryption/as400.des3.zip 33451 bytes 2 files
 Length Method Size Ratio Date Time CRC-32 Name
 -------- ------ ------- ----- ---- ---- ------ ----
 97182 Defl:F 30230 69% 01-30-04 13:16 223c2ea4 !/yourpath/encryption/
 appnote.txt
 5747 Defl:F 2710 53% 10-06-03 15:14 d193af9b !/yourpath/encryption/
 readme.txt
 -------- ------- ---- -------
 102929 32940 68% 2 files
 PKUNZIP extracted 0 files
 PKUNZIP Completed Successfully

Incorrect Passphrase Use
The following example shows the program's response to an incorrect passphrase. The error
message indicates that the file(s) were skipped because of an incorrect passphrase and that
PKUNZIP completed with errors.

 PKUNZIP Archive: /yourpath/encryption/as400.des.zip
 Archive Comment:"PKZIP for IBM i by PKWARE"
 Searching Archive /yourpath/encryption/as400.des.zip for files to extract
 skipping: /yourpath/encryption/appnote.txt incorrect passphrase
 skipping: /yourpath/encryption/readme.txt incorrect passphrase
 Caution: zero files tested in /yourpath/encryption/as400.des.zip.
 2 file(s) skipped because of incorrect passphrase
 PKUNZIP Completed with Errors
 Press ENTER to end terminal session.

Compress File with Public Digital Certificates
The first ZIP test will use both of the public certificates and 256-bit AES algorithm to encrypt
and compress one file to an archive in the folder that was created earlier. This test will use
the *MBRSET and *FILE types for the selection of the certificates.

PKZIP ARCHIVE('/myroot/pkware/CStore/Testzips/TestC01.zip')
 FILES('PKW14053S/$CONTACT') ADVCRYPT(AES256)
 TYPARCHFL(*IFS) TYPFL2ZP(*DB)
 ENTPREC((*MBRSET pktestdb3.crt)
 (*FILE '/myroot/pkware/CStore/Public/pktestdb4.crt'))

46

Scanning files in *DB for match ...
Total Recipients processed 2
Archive Recipient List:
CN=PKWARE Test4 EMail=PKTESTDB4@nowhere.com
CN=PKWARE Test3 EMail=PKTESTDB3@nowhere.com
Found 1 matching files
Compressing PKW14053S/$CONTACT($CONTACT) in TEXT mode
Add PKW14053.S/$CONTACT/$CONTACT -- Deflating (80%) encrypt(AES 256
Key)
Smartcrypt Compressed 1 files in Archive /myroot/pkware/CStore/Testzips/TestC0
1.zip
Smartcrypt Completed Successfully

The second ZIP test will use both of the public certificates and AES256 algorithm to encrypt
and compress one file to an archive in the folder. This test will use the *DB with email and
common name for the selection of the certificates.

PKZIP ARCHIVE('/myroot/pkware/CStore/Testzips/TestC02.zip')
 FILES('PKW14053S/$CONTACT') ADVCRYPT(AES256)
 TYPARCHFL(*IFS) TYPFL2ZP(*DB)
 ENTPREC((*DB 'EM=PKTESTDB3@nowhere.com')
 (*DB 'CN=PKWARE Test4'))

Scanning files in *DB for match ...
Total Recipients processed 2
Archive Recipient List:
CN=PKWARE Test4 EMail=PKTESTDB4@nowhere.com
CN=PKWARE Test3 EMail=PKTESTDB3@nowhere.com
Found 1 matching files
Compressing PKW14053S/$CONTACT($CONTACT) in TEXT mode
Updating:PKW14053.S/$CONTACT/$CONTACT Deflating (80%) encrypt(AES 2
56Key)
Smartcrypt Compressed 1 files in Archive /myroot/pkware/CStore/Testzips/TestC0
2.zip
Smartcrypt Completed Successfully

Decrypting File with Private Key Certificates

Requires Smartcrypt

In order to decrypt the file you will need to provide at least one valid private certificate with
the passphrase that matches a recipient on the archive.

PKUNZIP ARCHIVE('/myroot/pkware/CStore/Testzips/TestC01.zip')
 TYPE(*TEST)
 TYPARCHFL(*IFS)
 ENTPREC((*DB 'CN=PKWARE Test4' ('PKWARE')))

Encryption Using LDAP Search for Recipients

Requires Smartcrypt

 PKZIP ARCHIVE('/yourpath/aVXXTest/test013.zip')
 FILES('/yourpath/aVXXTest/recp/Test cases.txt')
 TYPARCHFL(*IFS) TYPFL2ZP(*IFS) TYPLISTFL(*IFS)

 47

 STOREPATH(*NO) ADVCRYPT(AES256)
 ENTPREC((*LDAP ‘EM=bill.Somebody@pkware.com' *N *RQD))

Displayed output from example.

Scanning files in *IFS for match ...
Total Recipients processed 2
Archive Recipient List:
CN=PKWCADMIN EMail=none
CN=William Somebody EMail=bill.Somebody@pkware.com
Found 1 matching files
Compressing /yourpath/aVXXTest/recp/Test cases.txt in BINARY mode
Add Test cases.txt -- Deflating (81%) encrypt(AES 256Key)
Smartcrypt Compressed 1 files in Archive /yourpath/aVXXTest/test013.zip
Smartcrypt Completed Successfully

48

3 ZIP Files

A ZIP archive is the storage facility for files that are compressed (or simply stored)
using the Smartcrypti product. The basic archive can hold up to 65,535 files, which
may have been compressed by up to 99% of their original size. Data integrity is
validated by a cyclic redundancy check (CRC) to maintain integrity of the data from
the compression through the extraction process. If the archive contains the ZIP64
archive format, the archive can support more than the 65,535 files and can be larger
than 4 GB (see “Large Files Considerations” in Chapter 1).

In addition to the data, file attributes are retained, allowing extraction of the same
file characteristics without the need of control card specifications. An archive can
exist in three possible states during processing, described as “old archive,”
“temporary archive,” and “new archive.” An explanation of the functions of each of
these is described in the sections below.

A ZIP archive is transferable between platforms. That is, files that are compressed by
Smartcrypti on one platform may be extracted by Smartcrypti on a different
platform, maintaining identical data.

This chapter describes the types of files used by Smartcrypti and provides a
description of the way in which they are accessed by Smartcrypti ZIP archives.

Smartcrypti (by default) creates a new archives in the *DB file system as members
of PF-DTA files with 132-byte records. The archive file is given a text field of “file
created by Smartcrypt for IBM i” or “file created by PKZIP for IBM i”. The archive
member is given a text field of “Member created by Smartcrypt for IBM i” or
“Member created by PKZIP for IBM i”. If you wish to create your own archive
(perhaps to have a larger record size, for performance), then you can do so, but try
to adhere to the following:

• When you create the file, do not create any members in it.

• After having created the file, change the MAXMBRS parameter for the file
from 1 to *NOMAX.

A ZIP archive holds files internally in one of several formats, which are compatible
with other platforms supported by PKZIP. These formats are described here, and
several commands are available for transforming files into one of these formats as
they are compressed. You may specify in which format a file is stored using the
FILETYPE(*BINARY) or FILETYPE(*TEXT) command parameters. IBM i OS SAVF are
always stored as *BINARY type. If you do not specify FILETYPE(*BINARY) or
(*TEXT), then the PKZIP and PKUNZIP programs both will default to
FILETYPE(*DETECT). For more information, see FILETYPE(*DETECT).

 49

 “Old” ZIP Archive
Starting with SecureZIPi Version 8.2, an optional input archive can be specified that
can be a different name than the archive that will be created for an output archive
file. If this is present, it is considered to be the “Old” ZIP archive. Otherwise the
first ARCHIVE parameter is considered to be the “Old” ZIP archive.

The new input archive parameter (2nd option of ARCHIVE) allows the ability to
preserve the input archive and create a new archive with a different name. This
would allow the new archive to take on new attributes such as FNE or non FNE
archive. The one requirement is that both archives must reside on the same file
system, such as IFS or the QSYS Library file system.

Note: If you are updating an archive in the IFS, and it contains a hard link (the
number of links is greater than 1), then the archive is not renamed at the end of the
process. Instead the archive file is copied to overwrite the archive. This assures that
the archive and all of the hard links are updated.

When there is not inputted archive, the 1st option of the ARCHIVE parameter for
PKZIP is known as the old ZIP archive, except when the TYPE(*ADD) parameter is
being used to create a new ZIP archive. The old ZIP archive may have been created
by Smartcrypti during an earlier operation or may have been created by PKZIP on
another platform and transferred from there. When a ZIP archive is being updated
(or when PKUNZIP is extracting files from a ZIP archive), the necessary details are
taken from the old ZIP archive. It should be noted that when Smartcrypti is
updating a ZIP archive, it takes the necessary data from the old ZIP archive, merges
it with any new data, and transfers it to a new ZIP archive (in a temporary member
in the same IBM i file as the old archive). When all updating is completed,
Smartcrypti deletes the old ZIP archive and then renames the new ZIP archive to
the same name as the old ZIP archive. For this reason a file containing a ZIP archive
should allow for at least one temporary member to be allocated. When Smartcrypti
creates an archive file, it uses MAXMBRS(*NOMAX).

 “Temporary” Archive File
A temporary archive file refers to an archive work in progress. Smartcrypti will
always use a temporary archive file and its definition depends on the file system. If
the file system type is IFS, then the temporary archive file will be in the same
directory of the specified new archive. If the file system type is QSYS, the
temporary archive file will become a member of the specified archive file. The
temporary file or member will have a unique name PKnnnnnnnn (where nn
represents an internal random number). When the file has been completed
successfully, the temporary name will be renamed to the specified name in the
ARCHIVE parameter. If this is a process in which an old archive is being updated,
then (if successful) the old archive will be deleted before the rename. If a problem
occurs, the temporary archive may stay with the temporary name. View the job log if
this happens to determine the status of the archive.

“New” ZIP Archive
When the processing of the temporary dataset is finalized, Smartcrypti creates a
new ZIPPED archive that is the modified “after” version of the old archive. The

50

modified name of the old archive and specified allocation information is transferred
automatically to the new archive after updating, and the old Archive is deleted. A
new ZIP archive is created when an old ZIP archive is updated, or when a
TYPE(*ADD) parameter (see Chapter 7) is used with Smartcrypti where there is no
old ZIP archive.

Self-Extracting Archive
The self-extracting programs are held as binary entities in the file PKZIPSFX of the
Smartcrypti library. The appropriate member is loaded and the executable data
copied to the beginning of the Archive as a preamble when requested.

The resulting archive can still be processed by Smartcrypti as a normal ZIP Archive.

When an input archive containing a self-extraction preamble is passed to
Smartcrypti for PKZIP processing and no value is supplied by SELFXTRACT, the
default of *MAINTAIN will keep any preamble if one exist. If the parameter
SELFXTRACT(*REMOVE) is supplied then the PREAMBLE is removed when writing the
new archive.

A self-extracting archive can be created from an existing archive by using
SELFXTRACT with a valid self-extractor. If the original archive contained a preamble,
it will be removed and the newly specified preamble will be inserted.

When transferring a self-extracting archive to a target system, be sure to transfer
the archive in binary format and adhere to requirements for executables in that
environment. (For example, a Windows program should be saved with an application
extension of EXE, and a UNIX file attribute should have executable authorization set
via the UNIX chmod command).

For more details and usage notes see the PKZIP command parameter in Chapter 7.

In most cases, to include the path, use STOREPATH(*REL) or
STOREPATH(*NOROOT). Do not USE STOREPATH(*YES) with self-extracting
archives.

Use the ISRTPATH parameter to preset a path to store the files.

See Appendix G for information on options that are available when running self-
extracting archives created by the various levels and types of self-extracting
programs.

Data Format - Text Records vs. Binary Records
Binary data is stored in a ZIPPED archive in its original format. Binary data may be
graphics or numbers that are already in “computer format.” Therefore, no translation
is done, and EBCDIC will remain EBCDIC. The length of binary records in UNZIP
processing is determined by the archive’s fixed-length records. Smartcrypti will fill
the available block automatically according to allocation specifications.

In the context of ZIPPED archives, a “text file” is one that is stored in the ASCII
format. A text file contains records of data, each separated by a delimiter to signify
the end of the record.

 51

Note: An EBCDIC file containing text information (such as source code) can be
stored in its original format by using BINARY, but it is not considered to be a “text”
file within the ZIP architecture.

Smartcrypti uses the default line delimiter CR-LF (X’0D0A’) at the end of each text
record. Text file members in the QSYS library file system use new line characters
(NL=X’15’) internally. Smartcrypti will handle the CR-LF and NL in both extraction
and compressions automatically.

At the time of PKUNZIP file extraction, Smartcrypti will convert text data from
ASCII to EBCDIC by using a translation table. During installation, several translation
tables are available, and the customization process will select one of the translation
tables as a default. Additional translation tables may be created through the
customizing procedure.

Situations may arise in unique platform interchanges, or when working with text files
from other countries where the default text translation table is not adequate. Users
may select any available translation table by using TRAN and FTRAN parameters.

Smartcrypti extracts text records stored in the ZIP archive by examining data for
record delimiter and file terminator indicators. Using these indicators, Smartcrypti
aligns records in accordance with target file attributes.

Text files (such as program source code) are held within an archive using the ASCII
character set for compatibility with other versions of Smartcrypti. For these to be
usable on IBM i OS, they must be converted to the IBM EBCDIC character set.
Additionally, the carriage return and line feed characters must be removed before
writing lines to a file because IBM i OS files are record-based and do not use control
characters to separate records or lines. Text files usually have spaces at the end of a
line. When using the text file handlers, Smartcrypti has less data to read because
the input/output routines remove trailing spaces and replace them with a new line
character. This improves Smartcrypti performance.

When extracting files from an archive, Smartcrypti must know whether to perform
text conversions. Smartcrypti stores an indicator in the archive file’s local header
defining if a file is binary or text-based. Because this indicator may be wrong in some
circumstances, use the FILETYPE keyword to specify whether text conversions are
required. When adding files to an archive, Smartcrypti will flag the file according to
the FILETYPE used.

Smartcrypti uses translation tables that should be suitable for most customers, but
some users may wish to alter the tables. The procedure for changing the translation
tables is discussed. If text files are only used on IBM i, then the FILETYPE(*EBCDIC)
may be used. This uses IBM i files “as is” for the file (which are faster for text files),
but does not translate the data to ASCII. This will provide a small improvement in
performance.

Additionally, Smartcrypti will translate each character in a text file from EBCDIC
character format to ASCII character format by default. This is done using one of the
two internal translation tables, which are named UKASCII and USASCII. It is
recognized that these translation tables may not suffice for all countries or all
situations, especially on those sites where text files are received from several
different countries for processing into a single format. The source of the translation
tables used by the PKZIP and PKUNZIP programs has been supplied, together with
instructions for modifying the tables to create additional files (see Appendix D for
details). This enables sites to modify the translation table as required.

52

In a case where FILETYPE is neither *TEXT nor *BINARY, *DETECT is the default
mode. Smartcrypti will read up to 64K of data from the input file and scan it for
non-translatable text characters using the active text translation table. If any
characters will not translate successfully using this method, the entire file will be
treated as if *BINARY has been used.

Note: One exception to this is X’00’ or the NULL terminator character, which is
commonly used in C language. The NULL character will be allowed within the files. If
file type is of a file in the archive is unknown whether it is text or binary, the user
may use the TYPE(*VIEW) and VIEWOPT(*DETAIL) parameters to examine the file
attributes.

File Attributes
Within each ZIP archive there are two different directories providing information
about the files held in that archive. A local directory is included at the front of each
file, with information pertaining to each file (for example: file size and date ZIPPED),
and a central directory is located at the end of the ZIP archive. The central directory
lists the complete contents of the ZIP archive and is the primary source of
information for UNZIP processing.

Smartcrypti stores extended attributes about the file that can be useful in
recreating the file during UNZIP processing. See the System Administrator’s Guide.

PC Shared Drives Format
One common mistake made when extracting a text file to a shared drive folder in the
IFS where the file will be used by a Windows application is to extract the file in text
mode. Extracting a file as a TEXT file on the IBM i will cause PKUNZIP to translate
the file to the EBCDIC format, since EBCDIC is the native IBM i format. The Windows
application expects the file to be in ASCII, so therefore this file should be extracted
using binary, since the files are stored in ASCII in the archive.

 53

4 File Extraction Process

Extracting Files to the QSYS Library File System
Before extracting files to the QSYS library file system using TYPFL2ZP(*DB), among
the questions to consider are:

• Does the file exist or will a new file be created?

• Did the file come from Smartcrypti or did it come from another platform?

• Are the files text type files from another platform where I need to know
the record length?

If the file does not exist and if the file did not come from Smartcrypti, you should
provide a record length for the file with the parameter DFTDBRECLN. If the file is
coming from Smartcrypti the record length will be in the extra data. If the file is
from Smartcrypti and the parameter was DBSERVICE(*YES), the complete
database definition from the extract data for database will be used to create the file.

If the file is to be created as text and the record length is too short then you will
receive messages indicating the records are being truncated.

Two common parameters that are used to alter or guide the extraction process are
the EXDIR and DROPPATH parameters. EXDIR provides the path library or library/file
that the file will be extracted to when no library or path exist for the files in the
archive. Of course, this is where the DROPPATH comes in to drop the first path or
library with *LIB or to remove all paths in a name with *ALL.

For example, files in an archive might look like this:

Archive/#1:
My Document/myfiles/test/myheader.txt
My Document/myfiles/test/mydata.txt
My Document/myfiles/test/mytrailer.txt

Archive/#2:
 QGPL/QCLSRC/MYCL01
 QGPL/QCLSRC/MYCL02
 QGPL/QCLSRC/MYCL03
 QGPL/QCLSRC/MYCL04

In archive #1 let’s assume that all three text files are of different records lengths. If
we want to extract each with their own length, we would have to make three runs to

54

create the files with different parameters. Or we could use CRTPF and create each of
the files so the files would exist with the proper record length.

 PKUNZIP ARCHIVE('Archive/#1') FILES('My
Document/myfiles/test/myheader.txt') TYPE(*EXTRACT)
EXDIR('MYLIB/MYHEADER') DROPPATH(*ALL) DFTDBRECLN(50)
CVTTYPE(*DROP)
 PKUNZIP ARCHIVE('Archive/#1') FILES('My Document/myfiles/test/mydata.txt')
TYPE(*EXTRACT) EXDIR('MYLIB/MYDATA') DROPPATH(*ALL) DFTDBRECLN(150)
CVTTYPE(*DROP)
 PKUNZIP ARCHIVE('Archive/#1') FILES('My Document/myfiles/test/mytrailer.txt')
TYPE(*EXTRACT) EXDIR('MYLIB/MYTRAILER') DROPPATH(*ALL)
DFTDBRECLN(20) CVTTYPE(*DROP)

The commands above would create three files in library MYLIB, with all files having
different record lengths.

Now suppose the files already exist with the names and record lengths. In this case,
we could do all three files at once with:

 PKUNZIP ARCHIVE('Archive/#1') TYPE(*EXTRACT) EXDIR('MYLIB/?MBR')
DROPPATH(*ALL) CVTTYPE(*DROP) OVERWRITE(*YES)

The MBR will force each member name to also become the file name.

In archive #2, let’s assume that we want to extract the CL source member and place
them in a different library call MYNEWLIB. If the QCLSRC file does not exist and the
archive was not built with DBSERVICE(*YES), then you would need to do a

 CRTSRCPF FILE(MYNEWLIB/QCLSRC)

to have the file setup correctly for source files. If the QCLSRC file already exist in
MYNEWLIB or the archive was built with DBSERVICE(*YES), then no special handling
is required.

Authority Settings
When extracting files into the QSYS library file system, whether the files came from
the AS/400 or another platform, the authorities are not taken from the archive, but
from the user’s current environment settings. The file’s authority is not stored in the
archive.

If a library is required to be created, PKUNZIP would create the library as if the
current user was issuing a CRTLIB command. For standard settings, it might create
the library with the following authority settings:

 Data --Object Authorities--
User Authority Exist Mgt Alter Ref
*PUBLIC *RWX
USER *RWX X X X X.

If the file does not exist, PKUNZIP will be required to create the file. If the file does
exist no authorities are changed. If the file is created, the authority will be the same
as if the user was issuing a CRTPF command in their environment. For most standard
settings, it would create the file with the following authority settings:

 55

 Data --Object Authorities--
User Authority Exist Mgt Alter Ref
*PUBLIC *RWX
MYOWNER *RWX X X X X

Extracting Files to the IFS
When extracting files to the Integrated File System with TYPFL2ZP(*IFS), record
lengths are not a concern as they were in the QSYS library file system. The main
considerations when extracting to the IFS is “what paths do you want for the file, or
should the file be stored in EBCDIC or ASCII”.

Path Considerations
If the name of files in the archive, starts with ‘/’, then with no other changes this will
be extracted to the root of the system with the first name in the path. This form of
path name is called a fully qualified path. File names that starts with a ‘/’ can
present a potential security hazard since the file will default to root structure of the
IFS.

If the name does not start with a ‘/’, the item will be extracted to the paths based on
the current directory (DSPCURDIR). This form of path name is called a relative path.

In both cases if the path(s) does not exist, the path(s) will be created with the
attributes of the parent folder.

Changing the path(s)
In cases where the path that is stored with a name of the file in archive is not
desired, then using the EXDIR and DROPPATH parameters should help guide the file
to where it should be placed.

Using EXDIR, you can define the path of the file(s) that will be extracted. If you need
to remove the path of the file in the archive, you can use DROPPATH(*ALL) to
remove all the paths before extracting or you can use DROPPATH(*LIB) to remove
only the first path name.

Again the coding of EXDIR follows the same rule with regards to fully qualified path
or relative path.

File Type Considerations
When extracting a file, the decision to whether the contents of file should be stored
in ASCII or EBCDIC needs to be made.

If the file is not a text file, it does not matter and should be stored as binary. If the
file is text, and will be used by a PC program, chances are the data is expected to be
in ASCII. Since the files are stored in the archive as ASCII, these files should be
extracted as TYPEFILE(*BINARY). If the file is to be used by an AS/400 application or
will be translated later, then chances are the file should be stored in EBCDIC. In this
case use TYPEFILE(*TEXT) to extract the file in EBCDIC.

56

Authority Settings
If directories are required to be created during the extraction, the authority settings
will be created according to the create directory definitions of the DTAAUT(*INDIR)
and OBJAUT(*INDIR) parameters.

The authority for the directory being created is determined by the directory it is
being created in. The directory immediately preceding the new directory determines
the authority. A directory created in the root is assigned the public authority given to
objects in the root directory. A directory created in QDLS for a folder defaults to
*EXCLUDE for a first level folder. If created in the second level or greater, the
authority of the previous level is used. The QOpenSys and root file systems use the
parent directory's DTAAUT value.

The object authority is based on the authority for the directory where this directory is
being created.

For IFS files, the access permissions flags of the file are captured. For example:

• S_IRUSR - Read permission for the file owner

• S_IWUSR - Write permission for the file owner

• S_IXUSR - Search permission (for a directory) or execute permission (for
a file) for the file owner

• S_IRGRP - Read permission for the file's group

• S_IWGRP - Write permission for the file's group

• S_IXGRP - Search permission (for a directory) or execute permission (for
a file) for the file's group

• S_IROTH - General read permission

• S_IWOTH - General write permission

• S_IXOTH - General search permission (for a directory) or general execute
permission (for a file)

These access permission flags will be set for the owner that is running the PKUNZIP
job and not the original owner.

Other user permissions from the parent folder will also be set for the file.

For example, the folder being extracted into has *PUBLIC as *EXCLUDE, the
extracted file will also have *PUBLIC as *EXCLUDE.

Extracting zSeries Variable Length Records (RDW/ZDW)
In the zSeries, PKZIP can compress variable length records and store the files known
as RDW or ZDW into an archive. The format of these records contains a 4 byte
length (store in little Endian) followed by the record itself for that length. These
records are stored in binary, therefore EBCDIC.

By using the TYPE(*DETECT), PKZIP will remove the record length before extracting
the records. The ending format will differ depending on if the extraction is to a
database file or to the IFS.

 57

To extract to a fixed length database file, each record will be extracted and placed in
the database forcing each record to be a fixed record in the database with no
translation.

To extract to the IFS, each record will have a New Line (NL 0x15) character inserted
at the end of each record. The records are still variable in length but with a
separator. If the file was an object or load module, the results will be unpredictable.

If a file is extracted with TYPE(*TEXT), the results are unpredictable.

If a file is extracted with type(*BINARY), then the file is extract as is, including the 4
byte length field in front of each record.

Extracting zSeries Native IO Records
In the zSeries, PKZIP can compress records and store the files using Native IO record
format method into an archive. The native blocks (with BDW and RDW controls) are
saved in the data stream. A special ZIP directory attributed is used to signal that the
data is in “BINARY Native Block I/O” format. The record data is stored in binary,
therefore EBCDIC.

By using the TYPE(*DETECT), PKZIP will remove the block and record length before
extracting the records. The ending format will differ depending on if the extraction is
to a database file or to the IFS.

To extract to a fixed length database file, each record will be extracted and placed in
the database forcing each record to be a fixed record in the database with no
translation.

To extract to the IFS, each record will have a New Line (NL 0x15) character inserted
at the end of each record. The records are still variable in length but with a
separator. If the file was an object or load module, the results will be unpredictable.

If a file is extracted with TYPE(*TEXT), the results are unpredictable.

If a file is extracted with type(*BINARY), then the file is extract as is, including the
any byte length fields in front of each record and blocks.

Extracting Spool Files
When extracting spool files with PKUNZIP, the attributes at the time of compression,
will be preserved except for new spool file numbers. That will be generated.
Parameter SPLUSRID is for the user ID on the new extracted spool file. If it is *DFT
the original user ID will stay with the new spool file. Parameter SFQUEUE is for the
OUTYQ and OUTQ library that the new extracted spool file will be placed. If *DFT is
specified then the original OUTQ will be used to place the spool file.

58

Note on extracting spool files: To create or extract spool file with PKUNZIP, the
user must have *USE authority to the API QSPCRTSP. The normal setting for the
API QSPCRTSP is Authority PUBLIC(*EXCLUDE). The API authority is set this way
so that system administrators can control the use of this API. This API has
security implications because you can create spooled file from the data of another
spooled file. To allow user to extract spool files change the API authority on a
need basis.

When extracting a spool file with PKUNZIP, the new spooled file will be created with
attributes based on values taken from the spooled file attributes when PKZIP
archived the spool file. The spool file’s file number, job, job user, job number, date,
and time are controlled by IBM i operating system during the creation of a spool file.

The new spool file that is created by the PKUNZIP is spooled under one of two jobs
and is dictated by IBM’s create spool file API. The job is determined by the user-
name field from the attributes. If the user name is the current user, it is a part of the
user's job and is owned by the user profile that the job was started with. First the
user profile for the user name must already exist. When using the user id override
(parameter SPLUSRID), the spool file will be now belong to the override user.

If the ownership of the new spooled file is assigned to a different user by a different
user profile name in the user-name field from the attributes, then the current user
must have *SPLCTL authority to assign the spooled file to another user. When this is
done, the new spooled file is by the user specified in the user name field or override
parameter. The new spooled file is then part of a special system job (QPRTJOB) that
is created for each user.

The new spooled file is placed on the output queue specified in the output queue
name field from the original spool file attributes. If the parameter SFQUEUE is used it
will override the attribute for the output queue.

In both cases, the spooled file name is the one contained in the spooled file
attributes parameter. The spooled file number will be the next sequential one
available for the job that the spooled file becomes a part of.

IBM i OS authority requirements when extracting spool files:

• Special Authority - *SPLCTL. This authority is needed if you are creating a
spooled file for another user.

• Output Queue Authority -*USE

• Output Queue Library Authority - *EXECUTE

• Object QSPCRTSP API Authority -*USE

The following are several examples of results of extracting spool files:

Start with archiving the following spool files that were created with job MYJOB1 and
user USER1:

File File Nbr Job User Number Date Time
QSYSPRT 397 MYJOB1 USER1 010893 12/11/09 13:35:29
QSYSPRT 398 MYJOB1 USER1 010893 12/11/09 13:36:09
QSYSPRT 399 MYJOB1 USER1 010893 12/11/09 13:36:09

Now extract with job MYJOB1 and user USER1 but now on a different day and job
number:

 59

File File Nbr Job User Number Date Time
QSYSPRT 2 MYJOB1 USER1 010927 12/12/09 09:57:42
QSYSPRT 3 MYJOB1 USER1 010927 12/12/09 09:57:42
QSYSPRT 4 MYJOB1 USER1 010927 12/12/09 09:57:42

Next extract with job MYJOB2 and user USER1 but now on a different day and job
number:

File File Nbr Job User Number Date Time
QSYSPRT 2 MYJOB2 USER1 010928 12/12/09 09:59:06
QSYSPRT 3 MYJOB2 USER1 010928 12/12/09 09:59:06
QSYSPRT 4 MYJOB2 USER1 010928 12/12/09 09:59:06

Next, using the user, override with the SPLUSRID(WSS) and submit MYJOB1 with
user USER1.

File File Nbr Job User Number Date Time
QSYSPRT 26 QPRTJOB WSS 010118 12/12/09 10:02:50
QSYSPRT 27 QPRTJOB WSS 010118 12/12/09 10:02:50
QSYSPRT 28 QPRTJOB WSS 010118 12/12/09 10:02:50

Notice that the job was changed to QPRTJOB since the user being extracted was
different than the user running the Job.

Next, signed on as user WSS, submit a job MYJOB11 with the job parameter USER
profile specified for user USER1.

 SBMJOB CMD(PKUNZIP ARCHIVE('atest/splftst/tst02')
 TYPE(*EXTRACT)) JOB(MYJOB11) USER(USER1)

File File Nbr Job User Number Date Time
QSYSPRT 2 MYJOB11 USER1 010936 12/12/09 10:25:25
QSYSPRT 3 MYJOB11 USER1 010936 12/12/09 10:25:25
QSYSPRT 4 MYJOB11 USER1 010936 12/12/09 10:25:25

60

5 IBM i File Processing Support

Smartcrypti can support files maintained in both the traditional QSYS library file
system and in IFS (integrated file system) along with supporting spool files.

QSYS (Library File System)
The QSYS file system supports the IBM i library structure. This file system provides
access to database files and all other IBM i object types that the library manages. On
the IBM i system, each QSYS type file (also called a file object) has a description that
details the file characteristics and how the data associated with the file is organized
into records, and, in many cases, the fields associated for each record. Whenever a
file is processed, the IBM i uses this description.

Of the objects in the library system, Smartcrypti will only process physical files that
have an attribute type of PF-DTA (physical data files), PF-SRC (physical source file),
or SAVF (save files).

QSYS files always exist in a library, and the PF-DTA and PF-SRC files (if data exist)
will always have one too many members in the file. Therefore, PF-DTA and PF-SRC
files have a name format of “library/file(member).” A SAVF (a special type of IBM i
file for saving and restoring IBM i objects) does not have any members giving a file
format of “library/file.” Because SAVF types are handled in a special way, they are
given additional consideration (see SAVF and use of SAVF method).

QSYS Summary
If the archive file is to be in the QSYS library system, set the Archive File Type
parameter to TYPARCHFL(*DB). Even though *DB is working with archive files that
are in a library file system, the IFS is utilized for performance and for large file
support (ZIP64). If you need Smartcrypti to use the QSYS library system
exclusively, for all processing—for example, to support OS400 features such as
Adopt Authority—set the parameter to TYPARCHFL(*XDB).

If the file being compressed or extracted is in the QSYS library system, set
parameter TYPFL2ZP(*DB).

If the list files (see Appendix C) are to be in the QSYS library system, set parameter
TYPLISTFL(*DB).

 61

Format Summary:

PF-DTA LIBRARY/FILE(MEMBER)

PF-SRC LIBRARY/FILE(MEMBER)

SAVF LIBRARY/FILE

IFS (Integrated File System)
The Integrated File System is a part of IBM i which supports stream input/output and
storage management similar to personal computer and UNIX operating systems,
while providing an integrating structure over all information stored in the IBM i.

The key features of the Integrated File System are:

• Support for storing information in stream files that can contain long
continuous strings of data. These strings of data might be, for example,
the text of a document or the picture elements in a picture. The stream
file support is designed for efficient use in client/server applications.

• A hierarchical directory structure that allows objects to be organized by
specifying the path through the directories to an object for access to an
object.

• A common view of stream files stored locally on IBM i, Integrated Netfinity
Server for iSeries, or a remote Windows NT server. Stream files can also
be stored remotely on a Local Area Network (LAN) server.

Directories and Current Directory
A directory is a special object that is used to locate objects by names specified by
users. Each directory contains a list of objects that are attached to it, and that list
may include other directories.

The current directory is the first directory in which the operating system locates files,
and where it also stores temporary files and output files. When you request an
operation for an object, such as a file, the system searches for the object in the
current directory, unless a different directory path is specified. The current directory
is similar in nature to the current library. If the file selection does not start with ‘/’
(Root Directory), the files should be in the path of the current directory.

Path and Path Names
A path name (also called a pathname on some systems) informs the system how to
locate an object. The path name is expressed as a sequence of directory names
followed by the name of the object. Individual directories and the object name are
separated by a slash (/) character. An example might be: directory1/directory2/file.

For convenience, the back slash (\) can be used instead of the slash in integrated file
system commands.

There are two ways of indicating a path name:

An absolute path name begins at the highest level, or root directory (which is
identified by the / character). For example, consider the following path from the /
directory to the file named testit: /mydept/myfiles/testit.

62

If the path name does not begin with the / character, the system assumes that the
path begins at your current directory. This type of path name is called a relative path
name. For example, if your current directory is mydept and it has a sub-directory
named myfiles containing the file testit, the relative path name to the file is:
myfiles/testit. Notice that the path name does not include the name of the current
directory. The first item in the name is the directory or object at the next level below
the current directory.

Stream Files
A stream file is a randomly accessible sequence of bytes with no further structure
imposed by the system. The integrated file system provides support for storing and
operating on information in the form of stream files. Documents that are stored in
IBM i folders are stream files. Other examples of stream files are PC files and the
files in UNIX systems. An integrated file system stream file is a system object that
has an object type of *STMF.

Other IFS Objects
There are other object types (such as link objects, etc.) in the IFS which at this time
are not supported by Smartcrypti.

File Systems in the IFS
There are currently ten (10) file systems that are part of the Integrated File System.
Each file system is a major sub-tree in the IFS directory structure. A file system
provides the support to access specific segments of storage that are organized as
logical units. These logical units on the IBM i are files, directories, libraries, and
objects.

Each of these file systems has a set of logical structures and rules for interacting
with information in storage. These structures and rules may be (and often are)
different from one file system to another. The IFS treats the library support and
folders support as separate file systems.

The ten file systems are:

• “root” - / file system. This file system takes full advantage of stream
file support and hierarchical directory structure of the integrated file
system. The root file system has the characteristics of the Disk Operating
System (DOS) and OS/2 file systems. Most of references throughout this
guide refer to the “root” system.

• QDLS - Document Library Services file system. This file system
provides access to documents and folders. See IBM’s Office Services
Concepts and Programmer’s Guide (SH21-0703) for additional
information.

• QOPT - Optical file system. This file system provides access to stream
data that is stored on optical media (such as CDs). See IBM’s Optical
Support (SC41-5310) for additional information.

• QSYS.LIB - Library file system. This file system supports the IBM i
library structure and provides access to database files and all of the other
IBM i object types that the library support manages.

 63

• NFS - Network File System. This file system provides the user with
access to data and objects that are stored on a remote NFS server. An
NFS server can export a network file system that NFS clients will then
mount dynamically. See IBM i OS Network File System Support (SC41-
5714) for additional information.

• QFileSvr.400. This file system provides access to other file systems that
reside on remote IBM i systems. See IBM’s Integrated File System
Introduction (SC41-5711) for additional information.

• QNetWare - QNetWare file system. This file system provides access to
local or remote data and objects that are stored on a server that runs
Novell NetWare 4.10 or 4.11 or to standalone PC servers running Novell
Netware 3.12, 4.10, 4.11, or 5.0. A user can mount NetWare file systems
over existing local file systems dynamically. See File Management (SC41-
5710) for additional information.

• QNTC Windows NT Server file system. This file system provides
access to data and objects that are stored on a server running Windows
NT 4.0 or higher. It allows IBM i applications to use the same data as
Windows NT clients. This includes access to the data on a Windows NT
Server that is running on an integrated PC Server. See IBM’s OS/400-
iSeries Integration with Windows NT Server (SC41-5439) for details.

• QOpenSys - Open Systems file system. This file system is compatible
with UNIX-based open system standards, such as POSIX and XPG. Like
the root file system, this file system takes advantage of the stream file
and directory support that is provided by the integrated file system. In
addition, it supports case-sensitive object names. See IBM’s Integrated
File System Introduction (SC41-5711) for additional information.

• UDFS - User-Defined File System. This file system resides on the
Auxiliary storage pool (ASP) of the user’s choice. The user creates and
manages this file system. See IBM’s Integrated File System Introduction
(SC41-5711) for additional information.

Smartcrypti works with all file systems, but the rules of each file system must be
adhered to or a file I/O error will most likely occur. In most cases, the files can be
compressed and extracted in one run when all the file names and paths meet the file
system’s rules. When creating an archive file in one file system, one restriction is
that when using the TMPPATH option, the temp path must also be in the same file
system as the archive files.

On the following pages are rules for some of the most used file systems.

Document Library Services File System (QDLS)
The QDLS file system supports the folders structure. It provides access to documents
and folders. Additionally, it supports IBM i folders and document library objects
(DLOs) and supports data stored in stream files.

Considerations and Limitations:

• You must be enrolled in the system distribution directory when working
with objects in QDLS.

• QDLS converts the lowercase English alphabetic characters a through z to
uppercase when used in object names. Therefore, a search for object

64

names using only those characters is not case sensitive. All other
characters are case sensitive in QDLS.

• Each component of the path name can consist of just a name, such as:
/QDLS/MYFLR1/MYDOC1 - or - a name plus an extension (similar to a DOS
file extension), such as: /QDLS/MYFLR1/MYDOC1.TXT.

• The name in each component can be up to 8 characters long, and the
extension (if any) can be up to 3 characters long. The maximum length of
the path name is 82 characters, assuming an absolute path name that
begins with /QDLS.

• The directory hierarchy within QDLS can be 32 levels deep.

• Must have proper authority within the path.

• The folders in the path must already exist.

• PKZIP will not create folders at this time.

• For more details, see the “Rules for Specifying Folder and Document
Names” discussion in the publication CL Reference.

Creating an Archive in a QDLS Personal Folder
The following is an example of creating and processing an archive in the Document
Library Services file system. First, assume a folder in QDLS with a name of
MYFOLDER where the archives will be stored. To view the folders, issue the
command WRKLNK '/QDLS/*' (you could use WRKDOC and WRKFLR, but WRKLNK is
better to use since PKZIP will be using /QDLS).

 Work with Object Links

Directory : /qdls

Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attribu
 11=Change current directory ...

Opt Object link Type Attribute Text
 . FLR
 .. FLR
 MYFOLDER FLR
 QBKBOOKS FLR

Run the PKZIP command:

PKZIP ARCHIVE('/QDLS/MYFOLDER/MYARCH1.ZIP') FILES('testlib/ben')
TYPARCHFL(*IFS)

The suffix .ZIP was added to help identify the file as an archive file.

Scanning files for match ...
Found 1 matching files
Compressing TESTLIB/BEN(BEESON) in TEXT mode
Add TESTLIB/BEN/BEESON -- Deflating (32%)
PKZIP Compressed 1 files in Archive /QDLS/MYFOLDER/MYARCH1.ZIP
PKZIP Completed Successfully
Press ENTER to end terminal session.

To see the file in the folders, run WRKLNK '/QDLS/MYFOLDER/*'

 65

 Work with Object Links

 Directory : /QDLS/MYFOLDER

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes
 11=Change current directory ...

 Opt Object link Type Attribute Text
 . FLR
 .. FLR
 MYARCH1.ZIP DOC

Next, to view the contents, run:

PKUNZIP ARCHIVE('/QDLS/MYFOLDER/MYARCH1.ZIP') TYPARCHFL(*IFS)

Archive: /QDLS/MYFOLDER/MYARCH1.ZIP 551 bytes 1 file
 Length Method Size Ratio Date Time CRC-32 Name
 -------- ------ ------- ----- ---- ---- ------ ----
 259 Defl:F 177 32% 11-27-00 15:32 b5dbf80c TESTLIB/BEN/BEESON
 -------- ------- ---- -------
 259 177 32% 1 file
PKUNZIP extracted 0 files
PKUNZIP Completed Successfully
Press ENTER to end terminal session.

Optical File System (QOPT)
The QOPT file system provides access to stream data that is stored on optical media
(such as CDs). Additionally, it provides a hierarchical directory structure (similar to
PC operating systems such as DOS and OS/2), is optimized for stream file
input/output, and supports data stored in stream files (known as DSTMF or
Distributed Stream Files).

Considerations and Limitations:

• QOPT converts the lowercase English alphabetic characters a to z to
uppercase when used in object names. Therefore, a search for object
names using only those characters is not case-sensitive. For more details,
see the publication Optical Support (SC41-5310).

• The path name must begin with a slash (/) and contain no more than 294
characters. The path is made up of the file system name, the volume
name, the directory and sub-directory names, and the file name. For
example:
/QOPT/VOLUMENAME/DIRECTORYNAME/SUBDIRECTORYNAME/FILENAME

• The file system name (/QOPT) is required.

• The volume name is required and can be up to 32 characters long.

• You can include one or more directories or sub-directories in the path
name, but QOPT requires none. The total number of characters in all
directory names and sub-directory names (including the leading slash)
cannot exceed 256 characters. Directory and file names allow any
character except X'00' through X'3F', X'FF', lowercase alphabetic
characters, and the following characters:

• Asterisk (*)

66

• Hyphen (-)

• Question mark (?)

• Quotation mark (")

• Greater than (>)

• Less than (<)

• The file name is the last element in the path name. The file name length is
limited by the directory name length in the path. The directory names and
file name combined cannot exceed 256 characters, including the leading
slash.

Processing Archive on a CD (QOPT)
The following is an example of processing an archive that exists on a CD and using
PKUNZIP to view or extract. Because the archive file is on a CD, and the file system
QOPT controls the CD, this archive basically exists in the IFS.

First, check and ensure the archive is on the CD by doing a WRKLNK (you can use
WRKOPTDIR, but using WRKLNK will show the actual paths required). Remember,
the volume of the CD is also a directory in QOPT file system. If the file names are
longer than eight characters, the file name will be changed, much like you see in
DOS systems. It will contain a tilde (~) followed by a number for files found with
excessive name lengths.

WRKLNK ‘/QOPT/*’

 Work with Object Links

 Directory : /QOPT

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes
 11=Change current directory ...

 Opt Object link Type Attribute Text
 MYTESTLABEL DDIR

The above screen shows that the volume label of the CD is “MYTESTLABEL”. Using
the “5” for the next level option, you can navigate through the directories. You will
then see the files and directories on the root of the CD. For example:

 Work with Object Links

 Directory : /QOPT/MYTESTLABEL

 Type options, press Enter.
 3=Copy 4=Remove 5=Next level 7=Rename 8=Display attributes
 11=Change current directory ...

 Opt Object link Type Attribute Text
 ARCHIVE.ZIP DSTMF
 GZIPPW.GAR DSTMF
 OS_400~3.DOC DSTMF
 PKZCVT~2.DOC DSTMF
 PKW90~1.SAV DSTMF
 PKW90~1.ZIP DSTMF

 67

To view the archive PKW90~1.ZIP (which is really the long name PKW14053S.ZIP)
contents, use PKUNZIP with *VIEW.

Use the command:

PKUNZIP ARCHIVE('/QOPT/MYTESTLABEL/PKW90~1.ZIP') TYPARCHFL(*IFS)
TYPE(*VIEW)

Archive: /QOPT/MYTESTLABEL/PKW90~1.ZIP 1373026 bytes 1 file
 Length Method Size Ratio Date Time CRC-32 Name
 -------- ------ ------- ----- ---- ---- ------ ----
 6044544 Defl:N 1372902 77% 08-16-01 21:17 d73f09cf PKW14053S.sav
 -------- ------- ---- -------
 6044544 1372902 77% 1 file
PKUNZIP extracted 0 files
PKUNZIP Completed Successfully

Compressing files from a CD (QOPT)
We can compress the document (.DOC) files on the CD shown in the previous
example and store them in an archive. Use this command to store in my archive
library ATEST under the file V509 archives with an archive file member named
CDTEST01.

PKZIP ARCHIVE('atest/v509/cdtest01')
FILES('/QOPT/MYTESTLABEL/OS_400~3.DOC'
'/QOPT/MYTESTLABEL/PKZCVT~2.DOC') TYPFL2ZP(*IFS)

Scanning files for match ...
Found 2 matching files
Compressing /QOPT/MYTESTLABEL/OS_400~3.DOC in BINARY mode
Add /QOPT/MYTESTLABEL/OS_400~3.DOC -- Deflating (77%)
Compressing /QOPT/MYTESTLABEL/PKZCVT~2.DOC in BINARY mode
Add /QOPT/MYTESTLABEL/PKZCVT~2.DOC -- Deflating (79%)
PKZIP Compressed 2 files in Archive ATEST/V509(CDTEST01)
PKZIP Completed Successfully

Because you would not be able to extract them to the CD, you may want to use the
parameter STOREPATH(*NO) so that only file names OS_400~3.DOC and
PKZCVT~2.DOC are stored in the archive.

For more details on path name rules in the QOPT file system, see the “Path Name
Rules” discussion in the publication Optical Support (SC41-5310).

Using QSYS.LIB via the Integrated File System Interface
Even though Smartcrypti accesses the QSYS library file system directly, there is an
ability to access the QSYS.LIB file system through the Integrated File System
interface. In using the Integrated File System interface, be aware of the following
considerations and limitations:

• Logical files are not supported.

• Physical files supported for text mode access are program-described
physical files containing a single field and source physical files containing a
single text field. Physical files supported for binary mode access include
externally-described physical files in addition to files supported for text
mode access.

68

• If any job has a database file member open, only one job is given write
access to that file member at any given time. Other requests are allowed
read-only access.

• In general, the QSYS.LIB file system does not distinguish between
uppercase and lowercase in the names of objects. A search for object
names achieves the same result, regardless of whether characters in the
names are uppercase or lowercase. If a name is enclosed in quotation
marks, the case of each character in the name is preserved. A search
involving quoted names, therefore, is sensitive to the case of the
characters in the quoted name.

• Each component of the path name must contain the object name followed
by the object type of the object. For example:
/QSYS.LIB/TESTLIB.LIB/MYFILE.FILE/MYFILE.MBR. The object name and
object type are separated by a period (.). Objects in a library can have the
same name if they are different object types, so the object type must be
specified uniquely to identify the object.

• The object name in each component can be up to 10 characters long, and
the object type can be up to 6 characters long.

• The directory hierarchy within QSYS.LIB can either be two or three levels
deep (two or three components in the path name), depending on the type
of object being accessed. If the object is a database file, the hierarchy can
contain three levels (library, file, or member), otherwise, there can be
only two levels (library or object). The combined length of each
component name plus the number of directory levels determines the
maximum length of the path name. If / and QSYS.LIB are included as the
first two levels, the directory hierarchy for QSYS.LIB can be up to five
levels deep.

• The characters in names are converted to code when the names are
stored. Quoted names, however, are stored using the code page of the
job.

For information about code pages, see the publication National Language Support.

IFS Summary
Only directories and stream files are supported by Smartcrypti.

If the archive file is to be in IFS, set parameter TYPARCHFL(*IFS).

If the file being compressed or extracted is in IFS, set parameter TYPFL2ZP(*IFS)

If the files to be selected for compression are to be non-case sensitive set parameter
TYPARCHFL(*IFS2).

If the list files are to be in IFS (see Appendix C), set parameter TYPLISTFL(*IFS).

Format Summary:

Directory Directory1/directory2 will be current
directory

Stream File filename or directory/filename will be current
directory

Full Path /Directory1/Directory2/filename

 69

For more information, see the IBM publication Integrated File System Introduction
(SC41-5711) or visit the IBM web site.

SAVF
SAVF, denoted by the IBM i OS system TYPE(*FILE) and ATTR(SAVF), is a special
form of file designed specifically to handle save/restore data in the IBM i system.

Some SAVF special characteristics are:

• The SAVF is always processed as binary with all records being 528
characters in length.

• Only a save and restore IBM i function can update or change data.

• A SAVF will not be selected if a member name is included in the file
specification.

• A SAVF is a means to compress other IBM i object types (programs,
modules, commands, logical files, triggers, etc.) that are in the IBM i
system by first doing a SAVLIB or SAVOBJ for those objects to a SAVF.
Then you can compress and extract the SAVF.

Compressing a SAVF file
The only difference when compressing a SAVF is not to specify a member (only
library/file). If a member is specified, then no SAVF types will be compressed.

Extracting Records into a SAVF file
It is helpful before extracting records from a ZIP archive to be aware of what file
names and file attributes are being stored for the compressed file.
VIEWOPT(*DETAIL) may be used on the archive to verify the information. An
attribute is stored in the archive header that identifies if the file is a SAVF. The
PKUNZIP program will also retain the original attribute from the extended attributes,
such as SAVF description and library description.

A common problem in some IBM i environments is that some users may not have the
authority to the SAVF commands which can result in failures.

Overwriting Current SAVF File
When extracting a compressed file, it may be desirable to overwrite the existing file.
By using the OVERWRITE(*YES) parameter, PKUNZIP will first issue a CLRSAVF
command to clear the save file. This demonstrates why care should be taken when
extracting a SAVF.

Compressing Spool Files
Smartcrypti has the ability to select, compress and extract spool files. Not only can
a spool file be compressed, they can be converted to other document formats that
will allow the document file to be distributed and read by other media and software.

70

All spool files are eligible for compression but only spool file types *SCS, *IPDS are
supported for text document conversion.

By using the PKZIP command and setting parameter TYPFL2ZP(*SPL), other
parameters will be shown to help select the spool files. To assist, a new command
PKZSPOOL is provided to sequence the selections and to eliminate parameters that
are not valid for the selection of spool files.

Spool file parameters specify the group of spool files that are to be selected. Eight
positional values can be specified to select the spool files: the spool file name
(SPLFILE), the spool file number (SPLNBR), the user that created the files (SFUSER),
the OUTQ that the file is residing (SFQUEUE), the form type specified (SFFORM), the
user data tag associated with the spool file (SFUSRDTA), the status of the spool file
(SFSTATUS), or the specific job name/user name/job number (SFJOBNAM). Only files
that meet all of the selection values will be selected. A sample of the default
selection parameters is shown in the window below:

Selection sample using the PKZSPOOL command.

 SPLF File Compression (PKZSPOOL)

 Type choices, press Enter.

 Archive Zip File name > myar

 Spool File *ALL Spool File Name, *All
 Spool File User *CURRENT User ID, *CURRENT, *ALL
 + for more values
 Output Queue Name *ALL OutQ name, *ALL
 Library Library, *LIBL, *CURLIB
 Print Form Type *ALL Form Type, *STD, *ALL
 Print File User Specified Data *ALL User Data, *all
 Spool Files Status *ALL *ALL, *READY, *HELD...
 + for more values
 Spool File Job Name Job name, blank for all
 User User Id
 Job Number Job Number
 Spooled file number *ALL 1-9999, *ALL, *LAST
 Target File Format *SPLF *SPLF, *TEXT, *PDF, *TEXT1...
 Target File Name *GEN1
 Type of processing *ADD *ADD, *UPDATE, *FRESHEN ..
 Compression Level *SUPERFAST *NO, *FAST, *NORMAL, *MAX...
 File Types *DETECT *DETECT *TEXT *BINARY
 Zip Spool Files *SPL *SPL
 Archive Passphrase

After defining what spool files are to be selected for compression, you will need to
define the file format the spool file should be stored in the archive. At this time,
there three formats: *SPLF (spool file native mode), *TEXT (ASCII text document
with three variations of how a new page is handled) and *PDF (Adobe portable
document format).

For use with *TEXT and *PDF there are three variations of storing the file name in
the archive with the parameter SFTGFILE. SFTGFILE (*GEN1) will generate a very
specific name using most of the spool file name attributes to form the file name so
that it will not be a duplicated. The name will be built as follows:

"Job-Name/User-Name/#Job-Number/Spool-File-Name/Fspool- File-
Number.Suffix"

 71

For example: "MYJOB/BILLS/#152681/INVOICE/F0021.SPLF"

The suffix is dependent on the SFTARGET setting. *SPLF can only be stored
as SFTGFILE (*GEN1).

SFTGFILE (*GEN1P) will generate the same specific name generated by *GEN1
except the ‘/’ for folders will all be replaced by ‘.’ to make the file name one lone
name. For example:

MYJOB.BILLS.#152681.INVOICE.F0021.SPLF

SFTGFILE (*GEN2) uses the spool file name and appends the spool file number
followed by the suffix that is depended on the SFTARGET setting. Caution should be
taken in that a duplicate file name in the archive could be created. An example of
GEN2 is a spool file INVOICE with spool file number of 21 that will be converted to a
text file will generate a file name of INVOICE21.TXT.

In cases where a very specific name is desired for the file in archive name,
SFTGFILE() can be coded with the name. This is designed for selecting only one file
at a time otherwise file names will be duplicated. Alternatively, you could add coding
to the CVTNAME routine and use the CVTFLAG to generate the desired file name.

Compressing Spool Files Examples
The following are several examples demonstrating the selection of spool files for
compression.

Example 1: Select a specific spool file (MYSPLFFILE) for the specific job (jobname-
WSSSPL, User-WSS and job number 11) in all output queues (the default of
SFQUEUE) and convert the spool file to a PDF format SFTARGET(*PDFLETTER) to fit
a letter format. store the archive in the IFS with TYPARCHFL(*IFS) .

PKZSPOOL ARCHIVE('/yourpath/bills/splftest01.zip') TYPARCHFL(*IFS)
 SPLFILE(MYSPLFILE) SFUSER(*ALL) SFJOBNAM(11/WSS/WSSSPL)
 SFTARGET(*PDFLETTER) SFTGFILE(*GEN1P)

Example 2: Select all spool files belonging to users WSS and TAIT (SPLUSERID) that
resides in the OUTQ QPRINTS (SFQUEUE) and compress them as spool files with
SFTARGET(*SPLF). This might be done to save the spool files for later review since
this OUTQ is purged on a regular basis.

 PKZSPOOL ARCHIVE('/yourpath/bills/splftest02.zip') TYPARCHFL(*IFS)
 SFUSER(WSS TAIT) SFQUEUE(QPRINTS) SFTARGET(*SPLF) SFTGFILE(*GEN1)

Example 3: Using the archive from Example 2, we want to restore or extract the
spool files in order to print them again. Except in this case we want them to belong
to the user MAS with SPLUSERID and place the spool files in the OUTQ MASQ
(SFQUEUE) located in the library DEVPLIB.

 PKUNZIP ARCHIVE('/yourpath/bills/splftest02.zip') TYPARCHFL(*IFS)
 TYPE(*EXTRACT) SPLUSRID(MAS) SFQUEUE(DEVPLIB/MASQ)

Example 4: Select the spool file QPRINTS (SPLFILE), spool file number 17 (SPLNBR),
user MAS (SFUSER) and convert the file to a TEXT file with SFTARGET(*TEXTFC). In

72

this case, the file is needed to read into a PC program and the user wants the ANSI
control characters in position 1 of each line.

 PKZSPOOL ARCHIVE('/yourpath/bills/splftest04.zip') TYPARCHFL(*IFS)
 SPLFILE(QPRINTS) SFUSER(MAS) SPLNBR(17)
 SFTARGET(*TEXTFC) SFTGFILE(*GEN1P)

Example 5: Now we want to extract the text file created in Example 4 to one of our
shared drives areas ('/yourpath/PCFILES') that our PCs can access. In this case the
normal extraction would identify the file as a text file and would convert it to
EBCDIC. Since the file will be used by a PC program that is expecting the data to be
in ASCII, we will have to extract the file as binary since the internal file is already in
ASCII. By specifying FILETYPE(*BINARY), this ensures that no translation of the data
takes place.

PKUNZIP ARCHIVE('/yourpath/bills/splftest04.zip') TYPARCHFL(*IFS) TYPFL2ZP(*IFS)
TYPE(*EXTRACT) FILETYPE(*BINARY)
EXDIR('/yourpath/PCFILES') DROPPATH(*ALL)

 73

6 IBM i PKWARE Save/Restore
Application Feature (iPSRA)

The IBM i PKWARE Save/Restore Application (iPSRA) feature enables Smartcrypti to
compress/encrypt IBM i save files directly to a file in an archive. The process
produces a result similar to creating a save file first and then compressing and/or
encrypting it into an archive, but the iPSRA feature economizes on time and disk
space by skipping the intermediate step. The iPSRA process can be integrated with
your existing backup/recovery procedures and systems on the IBM i.

iPSRA assists not only with compressing your save data but with encrypting the data
for offsite storage. The iPSRA process can execute multiple save operations with one
compression run, making it unnecessary to run repeated individual save commands.

The iPSRA feature integrates Smartcrypti compression and encryption technology
with IBM i Save and Restore APIs. The iPSRA feature works with the PKZIP command
to save objects and with the PKUNZIP command to restore them.

To use the iPSRA feature, you must have a working knowledge of the save/restore
commands in their native mode. The same uses and restrictions apply to the
save/restore commands in Smartcrypti as to the native commands. The use and
format of outfiles with any of the save or restore commands are the same as with
the native commands. For information about the native save and restore commands,
see the IBM manuals that describe these commands, or the IBM Web site:

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i

Save/Restore Command Overview
The iPSRA feature supports the following Save command types:

• Save (SAV) command

• Save Object (SAVOBJ) command

• Save Document Library Object (SAVDLO) command

• Save Library (SAVLIB) command

• Save Changed Object (SAVCHGOBJ) command

With the iPSRA feature, PKZIP spawns a batch immediate program named PKZSAVA
that processes save command data and causes it to be compressed—and optionally
encrypted—into an archive instead of being saved directly to disk. PKZSAVA uses the

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i

74

IBM API, which is a pre-started job in the QSYSWRK subsystem. The figure below
gives an overview of the process.

1. Edit files selection
for save commands
with – or ? Prefix.

2. Issue PKZSAVA
with compression
and (optional)
encryption

PKZIP
Command

Spawn job

PKZSAVA
Spawned Program

Job spawned as
“batch immediate” job

named PKZSAVA

IBM QaneSavaPKZSAVA Main
Task

Saving Data
To use the iPSRA feature to save data, you enter command strings for SAV, SAVOBJ,
and/or SAVLIB in the FILES parameter of PKZIP. Prefix each command string with a
hyphen (-) or question mark (?).

• A ‘-’ tells PKZIP that the entire command is entered and is ready to be
validated

• A ‘?’ causes PKZIP to prompt for command parameters to enter before
validating command syntax

The following example shows a PKZIP command to save the library MYLIB and some
other objects:

 PKZIP ARCHIVE('/MYpath/myarchive') FILES('-SAVLIB LIB(MYLIB)
 DEV(MYNAME1)' '?SAVOBJ DEV(MYNAME2)')

The command line above creates a saved library file or iPSRA file of the library MYLIB
and compresses it into the archive /MYpath/myarchive as file SAVLIB01_MYNAME1.
The command line uses the ‘?’ prefix with the command SAVOBJ to prompt for the
objects to be saved. These must be specified at the prompt. The SAVOBJ command
creates an iPSRA file named SAVOBJ02_MYNAME2 in the archive.

Restoring Data
The restore of a save object with a RSTLIB command works similarly except that
RSTLIB is used with PKUNZIP and only one file can be restored at a time, to assure
proper building of the saved objects.

Examples are given at the end of this chapter.

Syntax
Save command parameters must be consistent with the save command type entered
and must be separated by at least one blank character. Refer to the Control

 75

Language (CL) documentation for detailed information about valid parameters when
you save objects to save files.

File Names Used for Saved Data
The file name PKZIP uses for saved data in an archive is based on the type of save
command and the name used in the save command DEV parameter. If the DEV
parameter is *SAVF, then the name comes from the SAVF parameter. See the table
below for examples.

Command File Name

SAVOBJ DEV(‘MYPAYROLL’) SAVOBJnn_ MYPAYROLL

SAVLIB DEV(*SAVF) SAVF(MYLIB/MYSAVF)

SAV DEV(‘MYSAVFDEVPATH’) SAVnn_ MYSAVFDEVPATH
The nn in the example file names is the sequence number of the command for one
PKZIP run.

PKZIP removes from an archive existing files that have the same name as a new
save file. To help you avoid duplicating file names when updating an existing archive,
PKZIP checks to see if there are any iPSRA files in the archive. If there are, PKZIP
uses the largest nn number plus 1 as the starting nn for iPSRA files to be added. This
helps avoid accidentally overwriting iPSRA files when updating an archive.

Extended Data in Archive
Each save operation creates specific data in the extended data area to tell PKUNZIP
that a file to be restored is a file of the special SAVE type. The extended data also
provides history information that can be displayed with VIEWOPT(*ALL) to show the
original command, the job when the save data was created, the target release used
for the save, and the spawned job PKZSAVA.

Filename: SAVLIB01_DEDSAV01
Detected File type: SAVE Apps. Data
Created by: PKZIP(R) for IBM i 14.0
Zip Spec to Extract: 2.0 Or Greater
Compression method: Deflated [Superfast]
Date and Time 2009 Aug 8 14:08:58
Compressed size: 42876 bytes
Uncompressed size: 413808 bytes
32-bit CRC value (hex): 334d1674
Extended attributes: yes, [Length = 134]
File Save Apps Data:<savlib lib(deD) dev(dedsav01) OUTPUT(*OUTFILE)
 OUTFILE(WSS/TEM01)>
 :TGTRLS(*Current) Save Job <019627/USER1/PKZSAVA>
File Comment:"none"
-
Found 1 file, 413808 bytes uncompressed, 42876 bytes compressed: 90%
SecureUNZIP extracted 0 files
SecureUNZIP Completed Successfully

 Additional Message Information

 Message ID : AQZ0895
 Date sent : 08/08/09 Time sent : 14:09:20

 Message : File Save Apps Data:<savlib lib(deD) dev(dedsav01)

76

 OUTPUT(*OUTFILE) OUTFILE(WSS/TEM01)>

 This shows that the file is a Save Application data file type 4 and the
 command that was used to store the save file in the archive. Save Data
 created with PKZIP job 019586/USER1/USER1L01. Target System was *Current.

Notice in the output above that the spawned job (019627/USER1/PKZSAVA) was
captured as well as the PKZIP job (019586/USER1/USER1L01). Information on the
spawned job may be needed to do a DSPLOG command.

The target release (TGTRLS) is also shown to note the target setting for the run.

Notes and Restrictions
All IBM restrictions and security requirements apply to the use of the Save and
Restore commands in iPSRA. Some additional restrictions are noted below.

PKZIP

• QTEMP cannot be specified for the library name on the OUTFILE or
SAVACTMSGQ parameters.

• Some parameters of the save commands that are not used by iPSRA are
ignored. For example, CLEAR, DTACPK, and so on.

• Objects saved by PKZIP can only be restored using the restore from
application with PKUNZIP, and they can only be restored to a release of
the operating system that is the same or later than the version from which
the objects were saved.

• The save parameters are only completely validated when PKZIP submits
the save command for processing.

• A target release VxRxMx value prior to V5R1M0 is not valid: The iPSRA
feature is not supported prior to version 5, release 1, modification level 0
of PKZIP. The version, release, and modification level depend on the save
operation being performed. See the valid values for the TGTRLS
parameter table in the iSeries Backup and Recovery Manual for a complete
list of valid values.

• All compression methods except the Terse compression method are
supported with iPSRA.

• Positional options on the save commands must contain the parameter. For
example, the save library command

SAVLIB WSS DEV(*SAVF) SAVF(TESTWSS)

would not work to save the library WSS. The WSS is a positional parameter,
where it is assumed WSS was the LIB option. The correct approach with
iPSRA is to use the command:

-SAVLIB LIB(WSS) DEV(*SAVF) SAVF(TESTWSS)

• The save operation must be completely successful or it aborts. If any
object is not saved for any reason, the PKZIP job assumes a failure. Do
not include an object that will not save, as this object will cause a major
failure.

 77

PKUNZIP

• QTEMP cannot be specified for the library name on the OUTFILE
parameter.

• To ensure that all objects are properly restored, only one restore
command can be processed per run.

• Some parameters of the restore commands are not used by iPSRA and are
ignored. For example, VOL, SEQNBR, and so on.

• The user must have the required security for the restore command.

Using OUTPUT and OUTFILE with the Save Commands
A save command can have an OUTFILE parameter that is used to build a file listing
the objects saved with that command. When an OUTFILE is specified for a save
command, PKZIP automatically archives the outfile in the same archive as the iPSRA
file with the name specified. The outfile provides a record of the contents of an iPSRA
file. An outfile has the format and restrictions defined by IBM for the save
commands. Use of outfiles is optional.

If OUTPUT(*PRINT) or OUTFILE(*PRINT) is used with a save or restore command,
the printout is produced by the IBM API job – not with the PKZIP job or the spawned
PKZSAVA job. Therefore, it appears in the special OUTQ job named QPRTJOB for
each user.

How to Use the Save Application Feature
The save option is activated by entering a save command in the FILES parameter of
PKZIP, prefixed with a hyphen (-) or question mark (?). Multiple save commands can
be entered to select multiple sets of files in the same pass. The save commands do
not need to be the same, nor do they need to use the same prefix.

If a command fails the pre-command processor, PKZIP issues the message
AQZ0332, which shows the failed command. The reason for the failure appears in the
job log prior to this message.

If a failure occurs during the processing of the save commands, the reason for the
failure appears in the job log of the spawned job. If any errors occur in the spawned
job, a job log will be forced. There is no pre-check processing on security or on the
objects themselves. All data verification is handled by the save API.

For example, the following command tries to save a library (NOLIB) that does not
exist:

 PKZIP ARCHIVE('/yourpath/BILLS/X5TESTL.ZIP') TYPARCHFL(*IFS)
 FILES('-SAVLIB LIB(NOLIB) DEV(TESTSAV01) OUTPUT(*PRINT) ')

The log of the PKZIP output might look like this:

Scanning files in *DB for match ...
Found 0 matching files
1 Save Command(s) selected
Command:<SAVLIB LIB(NOLIB) OUTPUT(*PRINT)>
Compressing SAVLIB01_TESTSAV01 in SAVE Apps. Data mode

78

Save Operation encountered an error. See Job Log of PKZSAVA save job for fur
ther details.
iPSRA Initialization Failure has occurred
iPSRA Failed. Save command not successful.
Smartcrypt Copied 1 files from input archive
Smartcrypt Compressed 0 files in Archive /yourpath/BILLS/X5TESTL.ZIP
Smartcrypt Completed with Errors
Press ENTER to end terminal session.

The job log of the PKSAVF output might look like this:

CPF3781 Diagnostic 30 08/08/09 14:49:10.428528 QANESERV QSYS
From module : QANESERV
From procedure : QaneSendPgmMsg__FP14qanec_CTLBLK_tPcT2iN24
Statement : 19
To module : QP0ZPCPN
To procedure : InvokeTargetPgm__FP11qp0z_pcp_cb
Statement : 187
Message : Library NOLIB not found.
 Cause : The library specified for the save or restore
 operation does not exist on the system. Recovery . . . : Do one of the
 following and try the request again: If this is a save operation, correct
 the library name on the LIB parameter. If this is a restore operation,
 correct the library name specified on the SAVLIB or RSTLIB parameter, or
 use the Create Library (CRTLIB) command to create the library by
 specifying LIB(NOLIB). If this is a restore operation and VOL(*SAVVOL)
 was specified, the save library must exist in the auxiliary storage pool
 specified on the RSTASPDEV parameter. If RSTASPDEV(*SAVASPDEV) and
 RSTASP(*SAVASP) are specified along with VOL(*SAVVOL), then the save
 library must exist in the system ASP. To restore a library that is new to
 the system, specify VOL(*MOUNTED) instead of VOL(*SAVVOL).

How to Use the Restore Application Feature
To restore an iPSRA file from archive, code the restore command in the RSTIPSRA
parameter of PKUNZIP. The RSTIPSRA parameter is defined as a command entry, so
do not use quotes around the command. Enclose the entire restore command in
parentheses: RSTIPSRA(command). To be prompted at the command, place the
cursor on the RSTIPSRA entry and press the F4 key.

If an archive contains more than one file, you must use the FILES parameter to
select the file you want to match up with the RSTIPSRA parameter. PKUNZIP
restores only one iPSRA file per run.

If any object is not restored, PKUNZIP issues the message AQZ1007 and creates a
job log for the PKZRSTA job. You should review the log to find any object that was
not restored and the reason.

If a partial restore is performed, then the CRC and/or hash calculation for
authentication does not take place, and the warning message AQZ1000 is displayed.
This situation can arise if the save operation was a SAVLIB, but the restore operation
restores only a few objects with the RSTOBJ.

Database Considerations for Save and Restore
Below are some tips for working with the save and restore functions.

 79

• When you save an object to a save file or using iPSRA, you can prevent
the system from updating the date and time of the save operation by
specifying UPDHST(*NO) on the save command.

• When you restore an object, the system always updates the object
description with the date and time of the restore operation. Display the
object description and other save/restore related information by using the
Display Object Description (DSPOBJD) command with DETAIL(*FULL).

• To display the last save/restore date for a database file, type: DSPFD
FILE(filename) TYPE(*MBR).

Sample Jobs

iPSRA Example 1
The following example saves the library DED and prints the output of the save. It
also saves the file object TESTFILE from the library TESTLIB with several options of
the SAVOBJ. These save application files are compressed with a default setting and
will be encrypted using a passphrase.

 PKZIP ARCHIVE('/yourpath/bills/testsavx1.zip') TYPARCHFL(*IFS)
 FILES(
 '-SAVLIB LIB(DED) DEV(DEDSAV01) OUTPUT(*PRINT) '
 '-SAVOBJ OBJ(TESTFILE) LIB(TESTLIB) DEV(TESTOBJ11)
 OBJTYPE(*FILE) TGTRLS(V5R1M0) UPDHST(*NO)
 PRECHK(*YES) OUTPUT(*PRINT) ')
 PASSWORD('bills00000') VPASSWORD('bills00000')

Scanning files in *DB for match ...
Found 0 matching files
2 Save Command(s) selected
Command:<SAVLIB LIB(DED) OUTPUT(*PRINT)>
Compressing SAVLIB01_DEDSAV01 in SAVE Apps. Data mode
Add SAVLIB01_DEDSAV01 -- Deflating (90%) encrypt(AES 256Key)
Command:<SAVOBJ OBJ(TESTFILE) LIB(TESTLIB) OBJTYPE(*FILE)
UPDHST(*NO) PRECHK(*YES) OUTPUT(*PRINT)>
Compressing SAVOBJ02_TESTOBJ11 in SAVE Apps. Data mode
Add SAVOBJ02_TESTOBJ11 -- Deflating (79%) encrypt(AES 256Key)
Smartcrypt Compressed 2 files in Archive /yourpath/bills/testsavx1.zip
Smartcrypt Completed Successfully

iPSRA Example 2
The following commands display the contents of the archive:

 PKUNZIP ARCHIVE('/yourpath/bills/testsavx1.zip') TYPARCHFL(*IFS)
 TYPE(*VIEW)

Archive: /yourpath/bills/testsavx1.zip, 1358415 bytes, 2 files, 1 Segment
 Length Method Size Ratio Date Time CRC-32 Name
 -------- ------ ------- ----- ---- ---- ------ ----
 430192 Defl:S 43718 90% 08-09-05 08:16 ac1f8407 !SAVLIB01_DEDSAV01
 6325776 Defl:S 1313814 79% 08-09-05 08:16 101311d4 !SAVOBJ02_TESTOBJ11
 -------- ------- ---- -------
 6755968 1357532 80% 2 files

80

 PKUNZIP ARCHIVE('/yourpath/bills/testsavx1.zip') TYPARCHFL(*IFS)
 TYPE(*VIEW) VIEWOPT(*ALL)

Archive Comment:"Smartcrypt for IBM i"
Filename: SAVLIB01_DEDSAV01
Detected File type: SAVE Apps. Data Encrypt=Strong Encrypted
Created by: PKZIP(R) for IBM i 14.0
Zip Spec to Extract: 5.1 Or Greater
Compression method: Deflated [Superfast]
Date and Time 2009 Aug 9 08:16:16
Compressed size: 43718 bytes
Uncompressed size: 430192 bytes
32-bit CRC value (hex): ac1f8407
Extended attributes: yes, [Length = 130]
Strong Encryption AES 256 Key.
Algorithm Key 256, Security type Passphrase
Number Certificate Recipients 0
Recipient List:
File Save Apps Data:<SAVLIB LIB(DED) DEV(DEDSAV01) OUTPUT(*PRINT)>
 :TGTRLS(*Current) Save Job <019700/USER1/PKZSAVA>
File Comment:"none"
-
Filename: SAVOBJ02_TESTOBJ11
Detected File type: SAVE Apps. Data Encrypt=Strong Encrypted
Created by: PKZIP(R) for IBM i 9.2
Zip Spec to Extract: 5.1 Or Greater
Compression method: Deflated [Superfast]
Date and Time 2009 Aug 9 08:16:16
Compressed size: 1313814 bytes
Uncompressed size: 6325776 bytes
32-bit CRC value (hex): 101311d4
Extended attributes: yes, [Length = 217]
Strong Encryption AES 256 Key.
Algorithm Key 256, Security type Passphrase
Number Certificate Recipients 0
Recipient List:
File Save Apps Data:<SAVOBJ OBJ(TESTFILE) LIB(TESTLIB) DEV(TESTOBJ11) OBJTYPE
(*FILE) TGTRLS(V5R1M0) UPDHST(*NO) PRECHK(*YES) OUTPUT(*PRINT)>

 :TGTRLS(*Current) Save Job <019701/USER1/PKZSAVA>
File Comment:"none"
-
Found 2 files, 6755968 bytes uncompressed, 1357532 bytes compressed: 80%

iPSRA Example 3
Now we want to restore the saved library DED to a new library called DEDNEW and
then restore the object TESTFILE to the new DEDNEW library. PKUNZIP can perform
only one restore at a time, so the operation requires two steps.

Step1.
 PKUNZIP ARCHIVE('/yourpath/bills/testsavx1.zip') TYPARCHFL(*IFS)
 FILES('SAVLIB01_DEDSAV01') TYPE(*EXTRACT)
 RSTIPSRA(RSTLIB SAVLIB(DED) DEV(RSTDED) output(*print)
 RSTLIB(DEDNEW))
 PASSWORD('bills00000')

UNZIP Archive: /yourpath/bills/testsavx1.zip
Archive Comment:"Smartcrypt for IBM i"
Searching Archive /yourpath/bills/testsavx1.zip for files to extract
Command:<RSTLIB SAVLIB(DED) RSTLIB(DEDNEW) OUTPUT(*PRINT)>
Extracting file SAVLIB01_DEDSAV01

 81

Inflating *iPSRA:SAVLIB01_DEDSAV01 iPSRA File
SecureUNZIP extracted 1 files
SecureUNZIP Completed Successfully

Step 2.
 PKUNZIP ARCHIVE('/yourpath/bills/testsavx1.zip') TYPARCHFL(*IFS)
 FILES('SAVOBJ02_TESTOBJ11') TYPE(*EXTRACT)
 RSTIPSRA(RSTOBJ OBJ(TESTFILE) SAVLIB(TESTLIB)
 DEV(RSTTEST) OBJTYPE(*FILE) RSTLIB(DEDNEW)
 OUTPUT(*PRINT)) PASSWORD('bills00000')

UNZIP Archive: /yourpath/bills/testsavx1.zip
Searching Archive /yourpath/bills/testsavx1.zip for files to extract
Command:<RSTOBJ OBJ(TESTFILE) SAVLIB(TESTLIB) OBJTYPE(*FILE)
 RSTLIB(DEDNEW) OUTPUT(*PRINT)>
Extracting file SAVOBJ02_TESTOBJ11
Inflating *iPSRA:SAVOBJ02_TESTOBJ11 iPSRA File
SecureUNZIP extracted 1 files
SecureUNZIP Completed Successfully

iPSRA Example 4
The following example shows that we can restore one or more objects from an iPSRA
file that was created with SAVLIB.

 PKUNZIP ARCHIVE('/yourpath/bills/testsavx1.zip') TYPARCHFL(*IFS)
 FILES('SAVLIB01_DEDSAV01') TYPE(*EXTRACT)
 RSTIPSRA(RSTOBJ OBJ(MYFILE2) SAVLIB(DED) DEV(RST1FILE)
 OBJTYPE(*FILE) RSTLIB(DEDNEW) OUTPUT(*PRINT))
 PASSWORD('bills00000')

UNZIP Archive: /yourpath/bills/testsavx1.zip
Searching Archive /yourpath/bills/testsavx1.zip for files to extract
Command:<RSTOBJ OBJ(MYFILE2) SAVLIB(DED) OBJTYPE(*FILE)
RSTLIB(DEDNEW) OUTPUT(*PRINT)>
Extracting file SAVLIB01_DEDSAV01
Inflating *iPSRA:SAVLIB01_DEDSAV01 iPSRA File
SecureUNZIP extracted 1 files
SecureUNZIP Completed Successfully

iPSRA Example 5
The following example demonstrates the use of OUTFILE in a save command and
shows how PKZIP automatically adds the outfile to the archive.

 PKZIP ARCHIVE('/yourpath/bills/iPSRA_test/x3.zip')
 TYPARCHFL(*IFS) FILES(
 '-SAVLIB LIB(DED) DEV(DEDSAV01) OUTPUT(*OUTFILE)
 OUTFILE(ATEST/DEDSAV01)'
 '-SAV DEV('IFS_testpkcs7*') OBJ(('/ajunk/testpkcs7/*'))
 OUTPUT('/yourpath/bills/iPSRA_test/File01_SAV') ')

Scanning files in *DB for match ...
Found 2 matching files
2 Save Command(s) selected

82

Command:<SAVLIB LIB(DED) OUTPUT(*OUTFILE) OUTFILE(ATEST/DEDSAV01)>
Compressing SAVLIB01_DEDSAV01 in SAVE Apps. Data mode
Add SAVLIB01_DEDSAV01 -- Deflating (90%)
Compressing ATEST/DEDSAV01(DEDSAV01) in TEXT mode
Add ATEST/DEDSAV01/DEDSAV01 -- Deflating (98%)
Command:<SAV OBJ(('/AJUNK/TESTPKCS7/*'))
 OUTPUT('/yourpath/BILLS/IPSRA_TEST/FILE01_SAV')>
Compressing SAV02_IFS_TESTPKCS7* in SAVE Apps. Data mode
Add SAV02_IFS_TESTPKCS7* -- Deflating (63%)
Compressing /yourpath/BILLS/IPSRA_TEST/FILE01_SAV in BINARY mode
Add /yourpath/BILLS/IPSRA_TEST/FILE01_SAV -- Deflating (61%)
Smartcrypt Compressed 4 files in Archive /yourpath/bills/iPSRA_test/x3.zip
Smartcrypt Completed Successfully

Four files are stored in the archive. Two are the iPSRA files, and the other two are
the outfiles in the commands.

iPSRA Example 6
The example below shows a restore error.

 PKUNZIP ARCHIVE('/yourpath/bills/testsavx1.zip') TYPARCHFL(*IFS)
 FILES('SAVLIB01_DEDSAV01') TYPE(*EXTRACT)
 RSTIPSRA(RSTOBJ OBJ(TESTFILE) SAVLIB(TESTLIB)
 DEV(RSTTEST) OBJTYPE(*FILE) RSTLIB(DEDNEW)
 OUTPUT(*PRINT)) PASSWORD('bills00000')

UNZIP Archive: /yourpath/bills/testsavx1.zip
Archive Comment:"Smartcrypt for IBM i"
Searching Archive /yourpath/bills/testsavx1.zip for files to extract
Command:<RSTOBJ OBJ(TESTFILE) SAVLIB(TESTLIB) OBJTYPE(*FILE)
RSTLIB(DEDNEW) OUTPUT(*PRINT)>
Extracting file SAVLIB01_DEDSAV01
Inflating *iPSRA:SAVLIB01_DEDSAV01 iPSRA File
Restore Operation encountered an error. See Job Log of PKZRSTA restore
job for further details.
SecureUNZIP extracted 0 files
SecureUNZIP found 1 file(s) in Error

 Additional Message Information

 Message ID : AQZ1007
 Date sent : 08/09/09 Time sent : 09:54:57

 Message : Restore Operation encountered an error. See Job Log of
 PKZRSTA restore job for further details.

 DSPSPLF FILE(QPJOBLOG) JOB(019721/USER1/PKZRSTA) for job log and
 detail on why the restore operation failed. Possible problem may be that
 some or all of the objects may not have been restored due to some restore
 setting.

Since OUTPUT(*PRINT) was in effect you could view the restore output:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....
 5722SS1 V5R3M0 040528 RESTORE OBJECT INFORMATION
 OBJECT NAME : TESTFILE
 SAVE LIBRARY : TESTLIB
 OBJECT TYPE : *FILE
 SAVE FILE NAME . . . : QANE019357
 SAVE FILE LIBRARY . : QTEMP
 LABEL : *SAVLIB
 OPTION : *ALL
 MEMBER OPTION . . . : *MATCH
 SAVE DATE/TIME . . . :

 83

 ALWOBJDIF. : *NONE
 RESTORE LIBRARY . . : DEDNEW
 RESTORE ASP : *SAVASP
Specified file for library TESTLIB not found.
 * * * * * E N D O F L I S T I N G * * * * *

Or from the DSPSPLF FILE(QPJOBLOG) JOB(019721/USER1/PKZRSTA) the job log will
show the actual IBM Restore error messages:

CPF3806 Diagnostic 20 08/09/09 09:54:57.125128 QANESERV QSYS
 From module : QANESERV
 From procedure : QaneSendPgmMsg__FP14qanec_CTLBLK_tPcT2iN24
 Statement : 19
 To module : QP0ZPCPN
 To procedure : InvokeTargetPgm__FP11qp0z_pcp_cb
 Statement : 187
 Message : Objects from save file QANE019357 in QTEMP not restored.
 Cause : The library name in the save file does not match the
 library name that you specified in the SAVLIB parameter. Recovery . . . :
 Use the DSPSAVF command to display the save file and to determine the
 library from which the objects were saved. Specify the correct library in
 the SAVLIB parameter and try the command again.

CPF3780 Diagnostic 30 08/09/09 09:54:57.125152 QANESERV QSYS
 From module : QANESERV
 From procedure : QaneSendPgmMsg__FP14qanec_CTLBLK_tPcT2iN24
 Statement : 19
 To module : QP0ZPCPN
 To procedure : InvokeTargetPgm__FP11qp0z_pcp_cb
 Statement : 187
 Message : Specified file for library TESTLIB not found.
 Cause : The data in the save file or on the tape, diskette or
 optical volume did not match the specified parameters. Recovery . . . :
 See the previously listed messages. If the restore operation is from
 diskette, tape or optical, display the contents of the volume using the
 appropriate display command specifying the DATA(*SAVRST) parameter. If the
 restore operation uses a save file, display the contents of the save file
 (DSPSAVF command). Correct any errors and then try the request again.

iPSRA Example 7
The example below shows how the save information is depicted for an object that
was saved with PKZIP iPSRA and UPDHST(*YES) for the save command. Notice that
the save file shows the save library of QTEMP and the save file as QANExxxxxx. This
is an internal representation of the save API process. The device type will show as a
save file.

 DSPOBJD OBJ(DED) OBJTYPE(*LIB) DETAIL(*FULL)

 Display Object Description - Full
 Library 1 of 1
 Object : DED Attribute : TEST
 Library : QSYS Owner : WSS
 Library ASP device . : *SYSBAS Primary group . . . : *NONE
 Type : *LIB

 Save/Restore information:
 Save date/time : 08/10/09 11:16:41
 Restore date/time : 08/10/09 09:31:26
 Save command : SAVLIB
 Device type : Save file
 Save file : QTEMP/QANE020372

84

7 PKZIP Command

PKZIP Command Summary with Parameter Keyword Format
To compress data from the IBM i OS command prompt screen, the command format
is simply: PKZIP. There also is a PKZSPOOL command which is the same command as
PKZIP, but has the parameter TYPFL2ZP set to *SPL for spool files. The parameters
are also re-sequenced to give preference to parameters dealing specifically with
spool files.

The command prompt screen is displayed when Enter or PF4 is pressed. The
parameter keywords are displayed on this screen, together with the available
keyword options. If the command and parameter keywords are entered together on
the command line the required format is:

PKZIP keyword1(option) keyword2(option) . . . keywordn(option)

Keywords are demarcated by spaces. The keyword “ARCHIVE” is the only positional
keyword where the keyword is not required. Whenever the word “path” is used, its
meaning depends on the file system that is being used. If IFS is used, path refers to
the open system true path type. If the library systems or *DB is used, path means
library/file and then the file name refers to the member name.

ADVCRYPT({ZIPSTD})
{AES128} (Smartcrypt Only)
{AES192} (Smartcrypt Only)
{AES256} (Smartcrypt Only)
{3DES} (Smartcrypt Only)
{DES} (Smartcrypt Only)
{RC4_128} (Smartcrypt Only)

 {AE_2} (Smartcrypt Only)
{CAST5} (PKPGPZ Only)

ARCHIVE(Archive Zip File name with path)
 Archive to create { archive file name with path }
 Optional Input Archive File { archive file name with path }
 Output Archive File Disposition {*DEFAULT}

 {*PROTECT}
 {*OVERWRITE}

ARCHTEXT({*NONE})
Archive File Text description

AUTHCHK(Authenticators) (Smartcrypt Only)

 85

 Authenticate Type {*FILE}
 {*ARCHIVE}
 {*ALL}

 Lookup Type {*DB }
 {*LDAP}
 {*FILE}
 {*MBRSET}
 {*INLIST}
 {*SPONSOR} (Smartcrypt Partner (write mode)
only)

 Recipient {Recipient String}
 Passphrase (if Private) {Certificate passphrase}
 Required {*RQD }

 {*OPT}

AUTHPOL (Authenticate Filters:) (Smartcrypt Only)
Validate Level { *SYSTEM }
 {*WARN }
 {*VALIDATE}
 {*REQUIRED}
Validate Level { *NONE }
 {*ARCHIVE }
Filters {*SYSTEM }
 {*ALL}
 {*NONE}
 {*TAMPER}
 {*TRUSTED}
 {*EXPIRED}
 {*REVOKED}
 {*NOTAMPER}
 {*NOTTRUSTED}
 {*NOTEXPIRED}
 {*NOTREVOKED}

COMPAT({*NONE}) Deprecated

{*PK400}

COMPRESS(Compression options)
 Level {*SUPERFAST}

{*FAST}
{*NORMAL}
{*MAX}
{*STORE}
{*TERSE)
{E1 thru E9}

 Method {*DEFLATE32}
{*DEFLATE64}

 {*BZIP2}
{*STORE}
{*TERSE)

CRTLIST({*NONE})
path/filename
{*SIMULATE}

CVTDATA(External Pgm Conversion Extended Data)

CVTFLAG({*NONE})
External Pgm Conversion Flags

CVTTYPE({*NONE})
{*DROP}
{*SUFFIX}

DATEAB(mmddyyyy)

86

DATETYPE({*NO})
{*BEFORE}
{*AFTER}

DBSERVICE(({*NO})
{*YES)

DELIM (({CRLF})
{CR }
{LF }
{LFCR }

DFTARCHREC({132})
{decimal number}

DIRRECRS({*NONE})
{*FULL}
{*NAMEONLY}

ENTPREC(Lookup Type; Recipient; Passphrase; Required) (Smartcrypt Only)
 Lookup Type {*DB }

 {*LDAP}
 {*FILE}
 {*MBRSET}
 {*INLIST}
 {*SPONSOR} (Smartcrypt Partner (write mode)
only)

 Recipient {Recipient String}
 Passphrase (if Private) {Certificate passphrase}
 Required {*RQD }

 {*OPT}
ENCRYPOL (Encryption Filters:) (Smartcrypt Only)
 Validate Level {*SYSTEM }
 {*WARN }
 {*VALIDATE}
 Filters {*SYSTEM }
 {*ALL}
 {*NONE}
 {*TRUSTED}
 {*EXPIRED}
 {*REVOKED}
 {*NOTTRUSTED}
 {*NOTEXPIRED}
 {*NOTREVOKED}

EXCLFILE({*NONE})
path/filename

EXCLUDE(file_specification 1,)
file_specification 2,
file_specification n

EXTRAFLD({*YES})
{*NO}
{*CENTRAL}
{*LOCAL}
{*BOTH same as *YES}

ERROPT({*END})
{*SKIP}
{*WARN}

FACILITY (Algorithm Facilities) (Smartcrypt V5R3M0 Only)
 Encryption: {*DFT}

 {PKSW }
 {IBMSW }

 87

 {PKSW_IBMSW}
 {IBMSW_PKSW}

 Hashing: {*DFT }
 {PKSW }
 {IBMSW }
 {PKSW_IBMSW}
 {IBMSW_PKSW}

FILES(file_specification 1,)

file_specification 2,
file_specification n

 OR *COPY
FILESTEXT({*NO})

{*ALL}
{*NEW}
{*UPDATE}

FILETYPE({*TEXT})
{*BINARY}
{*EBCDIC}
{*FIXTEXT}
{*DETECT}

FNE({Create FNE | Overwrite FNE}) (Smartcrypt Only)
{*YES | *NO}

FTRAN({*ISO88591})
{*INTERNAL}
 Member Name

GZIP({*YES})
{*NO}

IFSCDEPAGE({*NO})
Code-page

INCLFILE({*NONE})
path/filename

MSGTYPE(Outlist Details:)
 Type {*BOTH}

{*PRINT}
{*SEND}

 License Info {*NORMAL}

{*SHORT}
{*NONE}
{*COPYRIGHT}

NSSRULES (NSS Process Settings:) (Smartcrypt Only)
 NSS Classify Archive {*SYSTEM }
 {*NO }
 {INACTIVE}
 {SECRET_SUITEB_REQPLUS}
 {SECRET_SUITEB_STRICT}
 {TOPSECRET_SUITEB_REQPLUS}
 {TOPSECRET_SUITEB_STRICT}

 NSS Check Archive State
 {*SYSTEM }
 {*NO}
 {*OPT}
 {*WARN }
 {*FAIL}

PASSWORD(Archive Passphrase)

88

PKOVRTAPF (Archive Tape Overrides:)
 Tape Device {*TAPF }
 { Tape Device }
 Tape File Label {*TAPF }
 { Tape Header Label}
 Tape Sequence Nbr {*TAPF }
 { 1-16777216 }
 {*END}
 File expiration date {*TAPF }
 { Date}
 {*NONE }
 {*PERM}
 End Of Tape Option {*TAPF }
 {*LEAVE}
 {*REWIND}
 {*UNLOAD}
 Shadow Dir File {*CSDF}
 {*NO}

SELFXTRACT ({*MAINTAIN})
{*REMOVE}
{WINDOWS}
{AIX}
{HP_UNIX}
{SUN_UNIX}
{LINUXINTEL}
{SF2WINC}
{SF2AIX}
{SF2HP}
{SF2SUN}
{SF2LNX2I}
{SFAWINC}
{SFAWING}
{SF6AIX}
{SF6HP}
{SF6SUN}
{SF6LNX2I}

SFUSER ({*CURRENT})
{user id 1}
{user id 2}
{user id 5)
{*ALL}

SFQUEUE ({*ALL})
{Library/OUTQ }

SFFORM ({*ALL})
{*STD}
{Spool File Form Type }

SFUSRDTA ({*ALL})
{Spool File User data}

SFSTATUS ({*ALL})
{*READY}
(*HELD }
{*CLOSED}
{*SAVED }
{*PENDING}
{*DEFERRED}

SFJOBNAM ({blanks })
{*}
{Job-name//User-Name/Job Number}

 89

SFTARGET ({*SPLF})
{*TEXT}
{*TEXT1}
{*TEXT2}
{*TEXTFC}
{*PDF}
{*PDFLETTER}
{*PDFLEGAL}

SFTGFILE ({*GEN1})
{*GEN2}
{*GEN1P}
{path/filename }

SIGNERS(Signer) (Smartcrypt Only)
 Signing Type {*FILE}

 {*ARCHIVE}
 {*ALL}

 Lookup Type {*DB }
 {*LDAP}
 {*FILE}
 {*MBRSET}
 {*INLIST}

 Recipient {Recipient String}
 Passphrase (if Private) {Certificate passphrase}
 Required {*RQD }

 {*OPT}

SIGNPOL (Signing Filters:) (Smartcrypt Only)
 Validate Level {*SYSTEM }
 {*WARN }
 {*VALIDATE}
 Filters {*SYSTEM }
 {*ALL}
 {*NONE}
 {*TRUSTED}
 {*EXPIRED}
 {*REVOKED}
 {*NOTTRUSTED}
 {*NOTEXPIRED}
 {*NOTREVOKED}

 Signing Hash {*SYSTEM }}
 {*SHA1}
 {*MD5}
 {*SHA256}
 {*SHA384}
 {*SHA512}

STOREPATH({*NO})
{*YES}
{*REL }
{*NOROOT}

SPLFILE ({*ALL})
{Spool File Name }

SPLNBR ({*ALL})
{*LAST}
{Spool File Number 1-9999}

TMPPATH({*CURRENT})
Temporary Path

90

TRAN({*ISO88591})
{*INTERNAL}
 Member Name

TYPARCHFL(Archive Type File)
 Type {*DB}

{*IFS}
{*TAP}
{*XDB}

 Check ZIP64 {*NONE}

{*WARN}
{*FAIL}

TYPE(*ADD)
{*UPDATE}
{*FRESHEN}
{*MOVEA}
{*MOVEF}
{*MOVEU}
{*DELETE}

TYPFL2ZP({*DB})
{*IFS}
{*IFS2}
{*DBA}
{*SPL}

TYPLISTFL({*DB})
{*IFS}

VERBOSE({*NORMAL})
{*NONE}
{*ALL}
{*MAX}

VPASSWORD(Archive Verify Passphrase)

PKZIP Command Keyword Details

ADVCRYPT

ADVCRYPT(ZIPSTD|AES128|AES192|AES256|DES|3DES|RC4_128|AE_2|CAST5)

Note: PKZIP for IBM i only supports *NONE and ZIPSTD options.

When a ZIP action is requested to save a file in an archive, and a passphrase is
provided, Smartcrypt for IBM i will use an encryption method to protect the data.

This command value specifies which algorithm to employ.

Possible encryptions are:

ZIPSTD This algorithm is the original algorithm used in PKZIP
2.x products and is compatible with other PKZIP 2.04g
products that support standard encryption. Unless the
installation defaults module has been tailored differently,

 91

this is the default value for Smartcrypti if you choose to
encrypt a file.

*NONE No Encryption

AES128 Advanced Encryption Standard 128-bit key algorithm,
also known as Rijndael.

AES192 Advanced Encryption Standard 192-bit key algorithm,
also known as Rijndael.

AES256 Advanced Encryption Standard 256-bit key algorithm,
also known as Rijndael. This is the default value for
Smartcrypt for IBM i.

DES Data Encryption Standard.

3DES Triple Data Encryption Standard.

RC4_128 RC4 is a stream cipher created by RSA.

AE_2 A passphrase-based symmetric key algorithm intended
for distribution of ZIP archives to operating
environments where this is the preferred method
(WinZip).

CAST5 A Smartcrypt implementation of the CAST5 algorithm
used only for OpenPGP files.

Usage Notes:

PKUNZIP will detect automatically which encryption method was specified during the
ZIP process and operate accordingly.

During a PKZIP (ZIP) run, only one encryption method may be specified, and that
method will be used for each file that is operated on.

By executing PKZIP at different times, various files within the archive may be saved
with differing levels (and types) of encryption. That is, some files may not be
protected at all, while others may have different methods and/or passphrases.

A “+” character is shown in a view to indicate standard encryption protection is used
for a file.

A “!” character is shown in a View to indicate advanced encryption (AES) protection
is used for a file.

OPENPGP formats only supports AES128, AES192, AES256, 3DES, and CAST5 .

92

ARCHIVE

ARCHIVE(archive name, optional input archive name, output archive Disp)

Archive Zip File:
 Archive Name _

 (Optional) Input *NONE _

 Output Archive Disp. . . *DEFAULT *PROTECT, *OVERWRITE...

Or

ARCHIVE(‘/yourpath/mypath/myarch.zip’)
ARCHIVE(‘/yourpath/mypath/myarch.zip’ *NONE *OVERWRITE)
ARCHIVE(‘/yourpath/mypath/myarch.zip’ ‘/yourpath/mypath/oldarch.zip’)
ARCHIVE(‘MYLIB/MYARCH/NEWZIP1’ ‘MYLIB/MYARCH/OLDZIP0’ *PROTECT)

This parameter specifies the archive files for output and/or input. Currently there
are 3 entries for the ARCHIVE parameter (Archive File to create, Optional Input
Archive file, and output file disposition).

Archive to create (archive file name with path)

Specifies the path/file name or the library/file name of the Smartcrypti archive to
be processed. If the file exists, PKZIP will overwrite the file, otherwise PKZIP will
create the file for you. Depending on which file system you choose, the path or
library must exist. This is a required parameter.

Optional Input Archive File (archive file name with path)

Specifies the path/file name or the library/file name of an archive the will be used as
input. This parameter provides the ability to have an input archive to update but this
archive is preserved and not updated. The files in the archive will be copied to the
new updated archive along with any new file selections. If an existing archive is to
be updated with the same archive name then using the “archive to create”
parameter is only required.

Output Archive File Disposition (*DEFAULT| *PROTECT|*OVERWRITE)

Specifies the output archive’s disposition if it exist.

*DEFAULT This option provides backward compatibility to version
prior to 8.2. If no input archive is provided, this option
is set to *OVERWRITE. If an Inputted archive is
provided then this option will be set to *PROTECT.

*PROTECT If the output archive file exist, do not overwrite the
archive and fail the run.

*OVERWRITE If the output archive exist, then overwrite the archive
with the new or updated archive.

NOTE: archive file name with path:

 93

The format of “archive file name with path” depends on whether you will be using
the archive file in the library file system, or the IFS (Integrated File System).

See parameter TYPARCHFL for file system type information.

Library File System
Format is library/file(member). If member is omitted, it
will be created with the file name. If the file is not
found, it will be created with a default length specified in
parameter DFTARCHREC (which has a default of 132).
If you want to create a file manually to use a larger
record length, create it with no members and with the
parameter MAXMBRS with *NOMAX, or with a high
excepted limit. If the Library is not specified, the file
name will be searched using *LIBL. If the file name is
not found, the file will be created in the users *CURLIB.
If a library is specified and does not exist, PKZIP will
create the library.

Integrated File System (IFS)
Open system path followed by the archive file name.
The path and file name can up to 256 characters and
may contain embedded spaces.

ARCHTEXT

ARCHTEXT(*NONE| Archive File Text description)

Specifies text that will be stored in the archive as the archive's file comment.

*NONE No new archive comment will be stored.

*DEFAULT The default PKWARE comment will be stored.

*CLEAR Clear any comment that may be stored in an archive.

Archive File Text description
Up to 255 characters that are stored as the archive's file
comments.

AUTHCHK

Requires Smartcrypt

Authenticator Certificates:
 File/Archive * ARCHIVE *ARCHIVE
 LookUp Type *DB *DB, *LDAP, *FILE, *MBRSET...
 Authenticator ______________________________
 Passphrase (If Private) . . . ______________________________
 Required *RQD *RQD, *OPT
 + for more values _

94

Or
AUTHCHK((*ARCHIVE *MBRSET
 'pkwareCertAdmin04.pfx' (passphrase) *RQD))
AUTHCHK((*ARCHIVE *FILE
 '/yourpath/PKWARE/Cstores/public/pkwareCertAdmin04.cer' () *RQD))
AUTHCHK((*ARCHIVE *DB
 ‘EM=bill.somebody@pkware.com' () *OPT))
AUTHCHK((*ARCHIVE *INLIST 'ATEST/INLIST(ENGNEER1)' *N)

This parameter specifies that digital signature authentication processing should be
performed for specific signers. Separate authentication processing may be specified
for either the archive central directory or files by using multiple commands.
Optionally, specific signers may be specified to authenticate against. This parameter
is used in conjunction with the AUTHPOL parameters and its settings.

It is possible that more than one certificate may be returned for a single common
name or email search. As a result, each one will be added to the list of validating
sources.

When no specific certificates are requested, any signatories found in the archive are
validated in accordance with the systems or current AUTHPOL Filters policy settings.

There are five options for AUTHCHK.

Authenticator Type File/Archive (*ARCHIVE)

Indicates the type of archive authentication to do. If the lookup type is *INLIST, then
this option will be ignored and will pick up from the records in the inlist file.

• *ARCHIVE - The archive directory will be authenticated with this
authenticator.

Lookup Type (*DB |*FILE |*LDAP |*MBRSET |*INLIST |*SPONSOR)

The lookup type would be the type of authenticator search to be used for the
authenticator string to look up the public key.

• *DB - The authenticator string is defined to search using the certificate
locator database to access the digital certificate.

• *FILE - The authenticator string is defined to read a specific file in a
specific path in the IFS in order to access the digital certificate.

• *LDAP - The recipient string is defined to search using the LDAP server to
access the digital certificate.

• *MBRSET - The authenticator string is defined to read this specific file
from the enterprise public certificate store to access the digital certificate.

• *INLIST- The authenticator string defines a specific file that will contain
one to many AUTHCHK. The TYPLISTFL parameter must specify the file
type for the inlist.

• If lookup type is *SPONSOR, the authenticator string is Sponsor Auth file
stored in the ‘…/Sponsor/Auth’ folder. If the authenticator string is all
numeric, the name will automatically be formatted as A0000000.p7,
assuming that the number is the sponsor ID number. (Write mode only)

 95

Authenticator (The authenticator string name)

The authenticator string format depends on what was specified for the lookup type.

• If lookup type is *DB, the authenticator string will either be an email
address or the common name of the certificate. This depends on the
configuration setting in PKCFGSEC parameter CERTDB. To override the
default selection mode, you can prefix the string with EM= for email, or
CN= for the common name.

For example:

AUTHCHK((*ARCHIVE *DB ‘CN=bill somebody' () *RQD))

• If lookup type is *FILE, the authenticator string is defined to read a
specific file in a specific path of the IFS. This file should be a public key
X.509 file or public key X.509 certificate with a private key file.

For example:

AUTHCHK((*ARCHIVE *FILE
'/yourpath/PKWARE/Cstores/public/pkwareCertAdmin04.cer' () *RQD))

The digital certificate file ‘pkwareCertAdmin04.cer’ will be in the full path
'/yourpath/PKWARE/Cstores/public’.

• If type is *LDAP, the authenticator string will either be an email address
or the common name of the certificate depending on the search mode
configuration setting in PKCFGSEC parameter LDAP. To override the
default selection mode, you can prefix the string with EM= for email
address, or CN= for the common name.

For example:

AUTHCHK ((*ARCHIVE *LDAP ‘bill.somebody@pkware.com' () *RQD)
 (*ARCHIVE *LDAP ‘CN=bill somebody' () *OPT))

• If lookup type is *MBRSET, the authenticator string is defined to read a
specific file from the public certificate store and/or the private certificate
store of the IFS. This file should be a public key X.509 file or public key
X.509 certificate with a private key file.

For example:

AUTHCHK((*ARCHIVE *MBRSET 'pkwareCertAdmin04.cer' () *RQD))

The digital certificate file ‘pkwareCertAdmin04.cer’ will be in the full path of
the public certificate store defined in the enterprise security configuration
public store (parameter CSPUB). If a passphrase is included, the file is
searched for in the enterprise security configuration private store (parameter
CSPRIV).

• If lookup type is *INLIST, the authenticator string defines a full file name
of an input list file that contains records of AUTHCHK shortcut parameters.
The type of file will exist in the QSYS library file system if TYPLISTFL(*DB)
is set and will be a path file name in the IFS if TYPLISTFL(*IFS) is set. The
format of the AUTHCHK shortcut parameters are defined below in the
*INLIST usage section.

96

Passphrase

This designates the passphrase that is required for a private key certificate with a
private key (PKCS#12 file). When a value is specified, the target must be an X.509
PKCS#12 public key certificate with the private key.

The PASSWORD value may contain blanks and is delimited by the closing right
parenthesis ")" of the signing command.

Required (*RQD|*OPT|*SAME)

If *RQD, then this authenticator must be found during the selection, and the
certificate must be a valid certificate with a private key, or the ZIP/UNZIP run will
fail.

Usage Notes:

Passphrases are masked out in all output displays.

A local certificate store configuration is required to complete the TRUST processing of
this command.

Processing is terminated if none of the requested certificates can be accessed,
regardless of the “R” required flag. If multiple requests are made and at least one
signature is found, processing continues normally.

For inlist that contains a passphrase to open a private certificate, make sure that the
security is sufficient to only allow the owner of the certificate to have read access.
Otherwise this would leave a security hole where other users could browse the
passphrase.

*INLIST Usage:

If *INLIST is defined on the AUTHCHK parameter, then the authenticator filed will be
a file that Smartcrypt will read to include the authenticator. The format is very
similar to the AUTHCHK parameter described above except that each line
authenticator starts with “{AUTHCHK=” and is terminated by the “}” character, with
the semi-colon “;” as a separator for each entry.

{AUTHCHK=Authenticator Type, Lookup Type; Authenticator; Passphrase; Required}

Authenticator Type See Authenticator Type in AUTHCHK

Lookup Type See Lookup Type in AUTHCHK excluding the INLIST

Authenticator See Authenticator in AUTHCHK.

Passphrase See Passphrase in AUTHCHK.

Required See Required in AUTHCHK, but use RDQ for *RQD and OPT for
*OPT.

Examples:

Sample 1: tstauth_db1.inlist.
{AUTHCHK=ARCHIVE;DB;EM=PKTESTDB4@nowhere.com;;RQD}

 97

Sample 2: tstauth_mb2.inlist.
{AUTHCHK=ARCHIVE;MBRSET;pktestdb3.pfx;PKWARE;RQD}

AUTHPOL

Requires Smartcrypt

Authenticate Filters:
 Validate Level *SYSTEM *VALIDATE, *WARN, *NONE...
 Validate Type *ARCHIVE *ARCHIVE, *NONE
 Filters *SYSTEM *SYSTEM, *ALL, *NONE...
 + for more values

Or

AUTHPOL(*WARN *ARCHIVE (*SYSTEM))
AUTHPOL(*WARN *FILE (*NOTTRUSTED))
AUTHPOL(*SYSTEM *ALL (*ALL *NOTEXPIRED))

This parameter defines the processing options and filters that should apply if a
signed file or signed archive is encountered.

Validate Level (*VALIDATE |*WARN |*REQUIRED |*SYSTEM)

The validate level specifies the type of authentication processing that should take
place if a signed archive is encountered. The default is *SYSTEM and, unless it is
modified, Smartcrypt will use the enterprise setting from PKCFSEC.

• *VALIDATE – Indicates that when authentication takes place and a failure
occurs based on the filters, the run will be considered a failure and the
message issued when the job terminates will indicate one or more errors
during the run.

• *WARN - Indicates that when authentication takes place and a failure
occurs, the failure is only to be considered a warning. The messages at
the end of the run will not consider any failed authentications as errors.

• *REQUIRED – Indicates that authentication must take place and that, if
any failure occurs based on the filters, the run will be considered a failure,
and the message issued when the job terminates will indicate one or more
errors occurred during the run. If the archive has not been signed, then
an error will be issued.

• *SYSTEM – Indicates the authentication processing that is set in the
environmental setting will be used.

Validate Type (*ARCHIVE |*NONE)

The validate type specifies that archive authentication should take place if an archive
has been signed. The default is *NONE and anything other than *NONE requires the
Enhanced Encryption Feature.

98

• *ARCHIVE - Indicates that only a signed archive will be authenticated.

• *NONE - Indicates no authentication will take place even though a file or
archive has been signed.

Filters (*SYSTEM |*ALL |*NONE |*TAMPER |*TRUSTED |*EXPIRED |*REVOKED
|*NOTAMPER |*NOTTRUSTED |*NOTEXPIRED |*NOTREVOKED)

The authentication filter policies settings are defined in the enterprise security file
supplied by the Smartcrypt administrator (See PKCFGSEC). These global policy
settings can be revised with sub-parameter values. The variables are cumulative
from the global setting.

• *SYSTEM – All filter policies are from the global settings.

• *ALL - This sub-parameter activates all levels of authentication. If
followed by negating sub-levels, then all but those negating levels are
activated. For example: *ALL NOTEXPIRED means that expired
certificates will not cause an authentication error, but TRUST and
TAMPERCHECK must both be satisfied.

• *NONE – Will negate all the policies.

• *TAMPER – This sub-parameter signifies that a verification of the data
stream should be done against the digital signature.

• *TRUSTED – This sub-parameter signifies that the entire certificate
authority chain must be validated. This includes locating the root (self-
signed) certificate on the local system.

• *EXPIRED – This sub-parameter signifies that certificate date range
validation should be performed on the certificates (including the certificate
authority chain). Although the term “expired” is used, a certificate that
has not yet reached its valid data range specification will fail.

• *REVOKED - A certificate owner may request that the issuing certificate
authority declare a certificate to be revoked and thereby no longer
consider that certificate to be valid. The authentication operation will fail if
any of the certificates in the trust chain are found to have been revoked,
or if the revocation status could not be determined

• *NOTAMPER – Negates the *TAMPER filter.

• *NOTTRUSTED – Negates the *TRUSTED filter.

• *NOTEXPIRED - Negates the *EXPIRED filter.

• *NOTREVOKED – Negates the *REVOKED filter.

COMPAT

COMPAT(*NONE|*PK400) Deprecated

Specifies that PKZIP will create and store extended data field information in another
supported format or previous version. At this time, only “PKZIP Version 4.0 for
OS/400” is supported.

The allowable values are:

 99

*NONE The extended data fields will be in Smartcrypti versions
5.0 and above formats.

*PK400 The extended data fields will output to the archive in the
format used by “PKZIP Version 4.0 for OS/400” product.
This option should be used if the archive file will be
extracted by “PKZIP Version 4.0 for OS/400” and the
attributes are required to create the files. The files can
be extracted without this option, but the files may have
to be manually created in order to have the proper
attributes (such as record length and text descriptions).

COMPRESS

Compression:
 Level *SUPERFAST *SUPERFAST, *FAST, *NORMAL...
 Method *DEFLATE32 *DEFLATE32, *DEFLATE64...

Or

COMPRESS(*FAST *DEFLATE64)
COMPRESS(E1 *DEFLATE32)
COMPRESS(*STORE)

This parameter specifies the speed and compression level when zipping a file.
Currently there are 2 entries for the COMPRESS parameter (Level and Method).

Compression Level (*SUPERFAST| *FAST| *NORMAL|*MAX|*STORE|*TERSE |E0 thru E9)

The compression level option specifies a compression level and speed to be used.
The option works in conjunction with the compression method option and specifies a
depth of compression using a sliding scale of values.

The allowable values are:

*FAST Fast selection provides ample compression at a fast rate.
Same as E2.

*SUPERFAST This is the default selection. This will compress in the
fastest time, but will compress the files by the least
amount. Same as E1.

*MAX This level provides the maximum compression possible,
but will also take the longest in time to process. Same
as E6.

*NORMAL The normal compression level provides good
compression amount at a reasonable speed. Same as
E3.

*STORE No compression. Store will also be used if the other
methods tried result in a file larger than the original.
Same as E0.

*TERSE This selection provides a terse compression algorithm
provided with the IBM i by IBM as an API. This is much

100

faster but is less efficient than FAST, and can only be
decompressed on the IBM i. Do not use this option if
you wish to unzip the archive on another platform.

E0 thru E9 E0 thru E9 are custom levels that can be used to try and
obtain the results based on your input files and desired
time and compression results.

The following table shows the balance of degree of compression and speed of
compression. The levels range from 0 (fastest speed with no compression) to 9
(highest level of compression, usually taking the longest amount of time and using
the most processor time).

Synonym Level Usage

STORE, E0 0 No compression is performed.

SUPERFAST, E1 1 Compression Method: Deflate32 or Deflate64

FAST, E2 2 Compression Method: Deflate32 or Deflate64

NORMAL, E3 3 Compression Method: Deflate32 or Deflate64

E4 4 Compression Method: Deflate32 or Deflate64

E5 5 Compression Method: Deflate32 or Deflate64

MAXIMUM, E6 6 Compression Method: Deflate32 or Deflate64

E7 7 Compression Method: Deflate32 or Deflate64

E8 8 Compression Method: Deflate32 or Deflate64

E9 9 Compression Method: Deflate32 or Deflate64

Usage Notes:

• Compression levels 1 through 9 all work with Deflate32, Deflate64, and
BZIP2 compression methods.

• “Maximum” is retained at level 4 to provide equivalent compression ratios
with earlier releases. Higher levels may yield better compression ratios
than previously obtained with “Maximum”.

• Compression results are data-stream dependent and produce non-linear
results. When configuring a job for high volume processing,
benchmarking results with sample file may be of value to find the best
balance between compression ratio and resources (elapsed and processor
time).

• In many cases, levels 8 and 9 do not produce significant compression
results over level 7.

• When compression level is STORE, or E0, the compression method will be
set automatically to store.

• When migrating from earlier releases of Smartcrypti, a difference in
compression ratio/processor time can be expected for a given data stream
and setting. Although internal settings have been tuned to produce
similar results across the scale of levels, a specific level setting may not
produce faster speeds or better compression for a data stream. If these
criteria are of importance, then benchmarking should be performed to
achieve the “best” fit results with the new algorithms.

 101

• BZIP2 compression levels are associated with memory management for
the algorithm. Higher numbers for the level may significantly impact the
region requirements for the run. For more information about BZIP2
member management, see http://bzip.org/1.0.5/bzip2-manual-
1.0.5.html#options.

Method (*DEFATE32 |*DEFLATE64 |*BZIP2 |*STORE |*TERSE)

This option specifies the algorithm to be used when compressing a file during ZIP
processing. The method works in conjunction with the compression level option to
specify a depth of compression.

STORE performs no compression of the data. Deflate64 (using the same level
control) will usually produce better compression with less processor time than
Deflate32.

The allowable values are:

*DEFLATE32 Use the Deflate 32 algorithm.

*DEFLATE64 Use the Deflate 64 algorithm.

*BZIP2 Use the BZIP2 compression algorithm.

*STORE Store Data with no compression.

*TERSE Use the IBM Terse algorithm.

Usage Notes:

• When compression method is store is specified, the compression level will
be set automatically to *STORE.

• The GZIP specification only supports Deflate32. When GZIP(*YES) is
encountered, PKZIP will automatically switch from Deflate64 or STORE to
Deflate32.

• Not all non-PKWARE “ZIP compatible” products in the market support the
more advanced Deflate64 algorithm. If the intended target systems
support Deflate64, then it may be chosen for the best compression/speed
performance.

CRTLIST

CRTLIST(*NONE| path/filename | *SIMULATE)

Specifies that PKZIP will create an output file with a list of entries that would have
been compressed based upon the selection criteria in the FILES and EXCLUDE
parameters.

Use FILES and EXCLUDE to generate a listfile; use INCLFILE in a separate command
to load the listfile.

See parameter TYPLISTFL for file system type.

*NONE Default. No list file will be created.

102

path/filename
Enter the file path and name of the file to create. The
layout depends on which file system you want to create
the file in.

Library File System: The format is "library/file(member)".

Integrated File System (IFS):
The format is "path1/path2/../pathn/filename".

*SIMULATE Will simulate the file selection and show the selection as
a printed or message list instead of writing to a list file.

CVTDATA

CVTDATA(External Program Conversion Extended Data)

Specifies the extended data that is passed to the external program CVTNAME. When
CVTFLAG is not *NONE, the contents of the parameter are passed to provide
extended flexibility in controlling how the IBM i names are stored in the archive. The
System Administrator’s Guide contains more information on CVTNAME.

External Program Conversion Extended Data
Specify up to 255 bytes of unedited data which is passed
to the exit program CVTNAME to assist in controlling the
program logic.

CVTFLAG

CVTFLAG(*NONE| Conversion Flags)

Specifies the flags passed to the external program CVTNAME. These are used to
control how the IBM i names are stored in the archive. The System Administrator’s
Guide contains more information on CVTNAME.

*NONE Conversion exit is not active.

Conversion Flags Specify a five-byte flag that is passed to the exit
program CVTNAME to control the program logic. If the
name passed back is blank, then conversion is referred
back to the setting of the CVTTYPE parameter.

CVTTYPE

CVTTYPE(*NONE|*DROP|*SUFFIX)

Specifies how the IBM i library and file names are stored in the archive. Since the
length of the library name, file name, and member name can each be up to 10
characters, and MS/DOS format requires a maximum of 8 characters with an optional
extension, this option allows name compatibility.

The allowable values are:

 103

*SUFFIX This forces any IBM i name with more than 8 characters
to create a name of 8 characters and a period(.),
followed by characters 9 and 10 to be considered an
extension to suffix.

*NONE This leaves the IBM i name as the archive name.

*DROP This forces any IBM i name with more than 8 characters,
to drop characters 9 thru 19.

DATEAB

DATEAB(mmddyyyy)

Used with DATETYPE parameter, DATEAB specifies the date to be used to compare
with the files latest modification date for file selection. The format is mmddyyyy,
where “mm” is a valid month (01-12), “dd” is valid day of the month, and “yyyy” is
the four digits of the year (2001).

DATETYPE

DATETYPE(*NO|*BEFORE|*AFTER)

Specifies if PKZIP should select files based upon a file modification date.

The allowable values are:

*NO No date selection will take place.

*BEFORE Files with a modification date before the date in
DATETYPE will be selected.

*AFTER Files with a modification date on or after the date in
DATETYPE will be selected.

DBSERVICE

DBSERVICE (*NO|*YES)

Specifies if the IBM i special database extended file attributes describing the
database file, fields and keys are to be store in the archives. This will force the
option EXTRAFLD(*YES). The database will also be stored in binary mode. This mode
can produce larger archive files.

The allowable values are:

*NO Does not store database extended services attributes.

*YES Stores the database extended service attributes in the
archive file and treat non-SAVF as a database.

104

DFTARCHREC

DFTARCHREC(132|Record Length)

Specifies the record length to use when creating an archive file in the QSYS library
system. If the TYPARCHFL parameter is *DB or *XDB, and the archive file does not
exist, the archive file will be created with the record length specified in this
parameter.

Note: A large record length will leave a high residual number if only one byte is use
in the last record.

The allowable values are:

132 Default is record length of 132 to match previous
versions.

Record Length A decimal number from 50 to 32000.

DELIM

DELIM(CRLF |CR |LF |LFCR)

When compressing a text file (not binary), the DELIM parameter specifies what
characters are to be appended at the end of records to serve as delimiters. The
delimiter is removed from the record when it is decompressed.

The allowable values are:

CRLF This is the default selection. Specifies for Smartcrypti
to use the default delimiter CR-LF (x’0D0A’) at the end
of each text record.

CR Appends an ASCII carriage return (hex 0D).

LF Appends an ASCII line feed character (hex 0A).

LFCR Appends an ASCII line feed character and a carriage
return (hex 0A0D).

Note that transfers of MS-DOS records use a CRLF for a delimiter, while UNIX
records use a LF.

DIRNAMES

DIRNAMES(*YES|*NO) Deprecated

Specifies to store directories as an entry. This is valid only for files in IFS.

*YES Store the directories as entries in the archive.

*NO Do not store directories as an archive entry.

 105

DIRRECRS

DIRRECRS(*NONE|*FULL|*NAMEONLY)

IFS only. Specifies whether to search recursively through directories for file selection,
or only search the current, specified directory.

The allowable values are:

*NONE Search only the current, specified directory.

*FULL Search through all directories by starting with the
current, specified directory for selected files. If *FULL is
used, and * is for file selections, all files found in all
directories below the current directory will be selected.

*NAMEONLY To be considered a hit, the full path and file name must
match the selection statements exactly.

ENTPREC

Requires Smartcrypt

Encryption Recipients :
 LookUp Type *DB *DB, *LDAP, *FILE...
 Recipient ______________________________________

 Passphrase (If Private) . . ______________________________________
 Required *RQD *RQD, *OPT
 + for more values _

Or

ENTPREC((*MBRSET 'pkwareCertAdmin04.cer' () *RQD))
ENTPREC((*FILE '/yourpath/PKWARE/Cstores/public/pkwareCertAdmin04.cer' ()
*RQD))
ENTPREC((*FILE '/yourpath/PKWARE/Cstores/public/pkwareCertAdmin04.pfx'
(‘mypassphrase’) *RQD))
ENTPREC((*DB ‘EM=bill.Somebody@pkware.com' () *RQD))
ENTPREC((*LDAP ‘EM=bill.Somebody@pkware.com' () *RQD))
ENTPREC((*INLIST 'ATEST/INLIST(ENGNEER1)' *N))

The encryption recipient parameter defines one to many Recipients which is to be
included for the ZIP process. This parameter allows 1-4 types of certificate searches
to take place along with providing the ability for an include file that may contain the
recipients.

The specification of this recipient ENTPREC parameter, triggers encryption to take
place during ZIP processing utilizing the found recipients along with any passphrase
that may be entered.

There are four entries for the ENTPREC parameter (lookup type, recipient,
passphrase, and required).

106

Lookup Type (*NONE |*DB |*LDAP |*FILE |*MBRSET |*SPONSOR |*SAME)

The Lookup type would be the type of recipient search that will be used for the
recipient string.

• *DB - The recipient string is defined to search using the Certificate Locator
Database to access the digital certificate.

• *LDAP - The recipient string is defined to search using the LDAP server to
access the digital certificate.

• *FILE - The recipient string is defined to read a specific file in a specific
path in the IFS in order to access the digital certificate.

• *MBRSET - The recipient string is defined to read this specific file from the
enterprise public certificate store to access the digital certificate.

• *INLIST - The recipient string defines a specific file that will contain 1 to
many recipients.

• *SPONSOR - The recipient string is the encryption recipient file for a
sponsoring partner. This applies only for SecureZIP Partner Read mode.

Recipient (The recipient string name)

The recipient string format depends on what was specified for the Lookup type.

• If type is *DB: The recipient string will either be an email address or the
common name of the certificate. This depends on the configuration setting
in PKCFGSEC parameter CERTDB. To override the default selection mode,
you can prefix the string with EM= for email address or CN= for the
common name.

For example:

ENTPREC((*DB ‘bill.Somebody@pkware.com' () *RQD)
 (*DB ‘CN=bill Somebody' () *RQD)
 (*DB ‘EM=bill.Somebody@pkware.com' () *RQD))

• If type is *LDAP: The recipient string will either be an email address or the
common name of the certificate depending on the search mode
configuration setting in PKCFGSEC parameter LDAP. To override the
default selection mode, you can prefix the string with EM= for email
address or CN= for the common name.

For example:

ENTPREC((*LDAP ‘bill.Somebody@pkware.com' () *RQD)
 (*LDAP ‘CN=bill Somebody' () *OPT)
 (*LDAP ‘EM=bill.Somebody@pkware.com' () *RQD))

• If type is *FILE: The recipient string is defined to read a specific file in a
specific path of the IFS. This file should be public-key X.509 file or
private-key X.509 certificate file.

For example:

ENTPREC((*FILE '/yourpath/PKWARE/Cstores/public/pkwareCertAdmin04.cer' ()
*RQD))

The digital certificate file ‘pkwareCertAdmin04.cer’ will be in the full path
‘/yourpath/PKWARE/Cstores/public’.

 107

• If type is *MBRSET: The recipient string is defined to read a specific file
from public certificate store / private certificate store of the IFS. This file
should be public-key X.509 file or private-key X.509 certificate file.

For example:

ENTPREC((*MBRSET 'pkwareCertAdmin04.cer' () *RQD))

The digital certificate file ‘pkwareCertAdmin04.cer’ will be in the full path of the
public certificate store defined in the Enterprise Security Configuration public
store(parameter CSPUB). If a passphrase was included, the file would be searched
for in the Enterprise Security Configuration private store (parameter CSPRIV).

• If the type is *INLIST: The recipient string defines a full file name of an
input list file that contains records of ENTPREC shortcut parameters. The
type of file will in the QSYS library file system if TYPLISTFL(*DB) is set
and will be a path file name in the IFS if TYPLISTFL(*IFS) is set. The
format of the ENTPREC shortcut parameters are define below in the
*INLIST usage section.

• If type is *SPONSOR, the recipient string is the sponsor recipient file
stored in the ‘…/Sponsor/Recip’ folder. If the recipient string is all
numeric, the name will automatically be formatted as R0000000.p7,
assuming that the number is the sponsor ID number.

Passphrase (Private Cert Passphrase)

The passphrase is required only if the certificate that is being selected is a private
certificate. This option should be omitted if a public certificate will be utilized.

Required (*RQD|*OPT|*SAME)

If *RQD, then this recipient must be found during the selection, and the certificate
must be valid, or the ZIP/UNZIP run will fail.

Usage Notes:

The ZIP process only requires a X.509 public-key format certificate to encrypt files.
The UNZIP process requires X.509 private-key format certificate file to decrypt files
and this will the input of a passphrase.

For inlist that contains a passphrase to open a private certificate, make sure that the
security is sufficient to only allow the owner of the certificate to have read access.
Otherwise this would leave a security hole where other users could browse the
passphrase.

*INLIST Usage:

If *INLIST is defined on the ENTPREC parameter, then the recipient field will be a file
that Smartcrypt will read to include recipients. The format is very similar to the
ENTPREC parameter describe above except each line recipient starts with
“{RECIPIENT=” and is terminated by the “}” character with the semi-colon “;” as a
separator for each entry.

{RECIPIENT=Lookup Type; Recipient; Passphrase; Required}

Lookup Type See Lookup Type in ENTREC excluding the INLIST

108

Recipient See Recipient in ENTREC.

Passphrase See Passphrase in ENTREC.

Required See Required in ENTREC, but use RDQ for *RQD and OPT for
*OPT.

Sample 1: tstpriv_db4.inlist.
{RECIPIENT=DB;EM=PKTESTDB4@nowhere.com;PKWARE;RQD}

Sample 2: tstpriv_mb3.inlist.
{RECIPIENT=MBRSET;pktestdb3.pfx;PKWARE;RQD}

Sample 3: tstpubl1.inlist.
{RECIPIENT=MBRSET;pktestdb3.crt;;RQD}
{RECIPIENT=MBRSET;pktestdb4.crt;;OPT}

Sample 4: tstpubl2.inlist.
{RECIPIENT=DB;EM=PKTESTDB3@nowhere.com;;RQD}
{RECIPIENT=DB;CN=PKWARE Test4;;OPT}

ENCRYPOL

Requires Smartcrypt

Encryption Filters:
 Validate Level *SYSTEM *VALIDATE, *WARN, *NONE...
 Filters *SYSTEM *SYSTEM, *ALL, *NONE...
 + for more values

Or

ENCRYPOL(*WARN (*SYSTEM))
ENCRYPOL(*WARN (*ALL *NOTTRUSTED))
ENCRYPOL(*SYSTEM (*ALL *NOTEXPIRED))

This parameter defines the processing options and filters that should apply when the
ENTPREC is used to encrypt files with certificate keys.

Validate Level (*VALIDATE |*WARN |*SYSTEM)

The validate level specifies the type of encryption certificate error processing that is
used if certificates are specified in ENTPREC. If *SYSTEM is specified, the enterprise
setting from PKCFSEC is used. If the enterprise setting is defined as lockdown, then
this parameter cannot be revised and a warning will be issued if a change is
detected.

 109

• *SYSTEM - Indicates the authentication processing that is set in the
environmental setting will be used.

• *VALIDATE – Indicates that when encryption with certificates (ENTPREC
parm) takes place and a failure based on the filters occurs, the run will be
considered a failure and the message issued at the end will indicate one or
more errors during the run.

• *WARN - Indicates that when encryption with certificates (ENTPREC parm)
takes place and a failure based on the filters occurs, the failure is only
considered a warning. The messages at the end of the run will not
consider any failed filters for encryption certificates as errors.

Filters (*SYSTEM |*ALL |*NONE |*TRUSTED |*EXPIRED |*REVOKED |*NOTTRUSTED
|*NOTEXPIRED |*NOTREVOKED)

The ENTPREC certificate filter policies settings are defined in the enterprise security
file supplied by the Smartcrypt administrator (see PKCFGSEC). These global policy
settings can be revised with sub-parameter values, but if the enterprise setting is
defined as lockdown, this parameter cannot be revised and a warning will be issued if
a change is detected. The variables are cumulative from the global setting.

• *SYSTEM – All filter policies are from the global settings.

• *ALL - This sub-parameter activates all levels of authentication. If
followed by negating sub-levels, then all but those negating levels are
activated. For example: *ALL, NOTEXPIRED means that expired
certificates will not cause an authentication error, but TRUST and REVOKE
must both be satisfied.

• *NONE – Will negate all the policies.

• *TRUSTED – This sub-parameter signifies that the entire certificate
authority chain must be validated. This includes locating the root (“self-
signed”) certificate on the local system.

• *EXPIRED – This sub-parameter signifies that certificate date range
validation should be performed on the certificates (including the certificate
authority chain). Although the term “expired” is used, a certificate that
has not yet reached its valid data range specification will fail.

• *REVOKED - A certificate owner may request that the issuing certificate
authority declare a certificate to be revoked and thereby no longer
consider that certificate to be valid. The encryption certificate request will
fail if any of the certificates in the trust chain are found to have been
revoked or if the revocation status could not be determined.

• *NOTTRUSTED – Negates the *TRUSTED filter.

• *NOTEXPIRED - Negates the *EXPIRED filter.

• *NOTREVOKED – Negates the *REVOKED filter.

110

ERROPT

ERROPT(*END | *SKIP | *WARN)

Specifies what action to take if an error occurs while processing (selecting or
compressing) a spool file or using the iPSRA.

If iPSRA with the command is SAVCHGOBJ and no files were found to archive, then
the error AQZ0368 “Save Command Found Nothing to Do” is issued. AQZ0368
follows the rules of the ERROPT parameter.

If iPSRA is active in the run and an exception occurs (for example, the library was
not found with SAVLIB), the message AQZ1023 follows the rules of the ERROPT
parameter.

The allowable values are:

*END PKZIP will end without completing the compression of
the file and the archive will not be built nor updated.

*SKIP The program will skip the file with the input error and
continue to process all other files to completion. If no
other errors occur, the run will issue the AQZ0020 to
indicate a successful run. A valid archive is built.

*WARN The *WARN option performs the same as *SKIP option
but the error message AQZ0022 will be issued at the
end to indicate that an error occurred.

EXCLFILE

EXCLFILE(*NONE| path/filename)

This parameter specifies the file containing the list of files to be excluded. This can
be used with or without the EXCLUDE parameter. See parameter TYPLISTFL for file
system type information.

*NONE No list file will be processed.

path/filename Enter the file path and name of the file to process. The
layout depends on which file system you want the file
created.

Library File System:
The format is "library/file(member)".

Integrated File System (IFS):
The format is "path1/path2/../pathn/filename".

EXCLUDE

EXCLUDE(file_specification1, file_specification2,... file_specification n)

Specifies the files and file specification patterns that will be excluded from the PKZIP
run. One or more names can be specified. Each name should be in the IBM i OS file

 111

system format, such as, QSYS is library/file(member) and IFS is directory/file, and
can include wildcards “*” and “?.”

Note: If TYPE(*VIEW) is being used, then the format for these names is the
MS/DOS format.

The PKZIP program can also exclude file specifications by using the list file
parameter EXCLFILE with a list of names to exclude.

Please refer to “File Selection and Name Processing” in Chapter 1 for details of file
specification formatting.

The valid parameter values for the FILES keyword are as follows:

'file_specification1'

'file_specification2'

'file_specification n'

EXTRAFLD

EXTRAFLD(*YES|*NO)

Specifies if the basic Smartcrypti extended file attributes should be stored in the
archive. Some basic file attributes are record size, library text description, file text
description, etc.

The allowable values are:

*YES Store the basic normal IBM i file attributes. This is the
default and will be the same as coding *BOTH.

*NO Do not store any extended attributes.

*CENTRAL Stores the basic normal IBM i file attributes in only the
archive’s central directory. This will reduce the overall
archive size by only storing the attributes in the Central.

*LOCAL Stores the basic normal IBM i file attributes in only the
archive’s local directory. Warning: PKUNZIP only
utilizes the central directory for extended data
attributes.

*BOTH Stores the basic normal IBM i file attributes in both the
archive’s central directory and local directory.

Migration consideration: if the archive will be processed by an earlier release of
PKZIP for iSeries™ and the attributes are required, then *BOTH should be coded.

FILES

FILES(file_specification1, file_specification2,... file_specification n)

Specifies the files and file specification patterns that will be selected in the PKZIP
process. One or more names can be specified. Each name should be in the IBM i OS

112

file system format, such as, QSYS is library/file(member) and IFS is directory/file,
and can include wildcard “*” and “?.” For the IFS, the path and file name can up to
256 characters and can contain embedded spaces.

If the FILES parameter starts with a question mark (?) or a dash (-), then PKZIP
assumes that a Save command is being entered to activate the iPSRA feature. For
details on how to enter iPSRA commands, see Chapter 6.

The key word “*COPY” as an option of FILES parameter, will copy the files from the
input archive to the new archive. This can be used when creating a new archive with
a different name and avoid selecting any new files.

Note: If TYPE(*VIEW) or TYPE(*DELETE) is being used, then the format for these
names is the MS/DOS format.

The PKZIP program can also have file specifications selections to include by using the
list file parameter INCLFILE with a list of names to select.

Files may also be excluded. See the EXCLUDE parameter.

Please refer to “File Selection and Name Processing” in Chapter 1 for details of file
specification formatting.

The valid parameter values for the FILES keyword are as follows:

'file_specification1'

'file_specification2'...

'file_specification n'

FACILITY (Algorithm Facilities)

Requires Smartcrypt for IBM i V5R3M0 or above

Algorithm Facilities:
 Encryption: *DFT *DFT, PKSW, IBMSW...
 Hashing: *DFT *DFT, PKSW, IBMSW...

Or

FACILITY((IBMSW_PKSW) (*DFT))

FACILITY defines the Encryption and Hashing Algorithm API’s that are available and
their sequences. At this time there are only two facilities of APIs 1). PKWARE and
2). IBM Software Security.

Currently there are 2 entries for the FACILITY parameter: Encryption, and Hashing.

Encryption: (*DFT | PKSW | IBMSW | PKSW_IBMSW | IBMSW_PKSW)

Sets the encryption facility API to use in the run.

*DFT Use the encryption facility specified in the environment
setting defined in the PKCFGSEC parameter FACENC

 113

PKSW Use PKWARE API for encryption

IBMSW Use IBM Software API for encryption

PKSW_IBMSW Both PKWARE API and IBM Software API are available
for encryption, but use PKWARE API if available

IBMSW_PKSW Both IBM Software API and PKWARE API are available
for encryption, but use IBM Software API if available

Hashing: (*DFT | PKSW | IBMSW | PKSW_IBMSW | IBMSW_PKSW)

Sets the hashing facility API to use in the run.

*DFT Use the hashing facility specified in the environment
setting defined in the PKCFGSEC parameter FACHASH.

PKSW Use PKWARE API for Hashing.

IBMSW Use IBM Software API for Hashing.

PKSW_IBMSW Both PKWARE API and IBM Software API are available
for Hashing, but use PKWARE API if available.

IBMSW_PKSW Both IBM Software API and PKWARE API are available
for Hashing, but use IBM Software API if available.

FILESTEXT

FILESTEXT(*NO|*ALL|*NEW|*UPDATE)

Specifies if PKZIP allows the editing (and the type of editing performed) of a file’s
text comments that are stored in an archive.

The allowable values are:

*NO No comment editing (the default).

*ALL Add comments or edit comments for all files in the
archive.

*NEW Add comments only for new files that are added to the
archive.

*UPDATE Add or edit the comments of files that are added,
updated, or freshened in the archive. Only file
comments of files that are affected by a change are
eligible for editing.

FILETYPE

FILETYPE(*BINARY|*DETECT|*EBCDIC|*FIXTEXT|*FIXTXTN|*TEXT)

Specifies whether the files selected are treated as text or binary data. For text files
added to an archive, trailing spaces in each line are removed, the text is converted
to ASCII (based on the translation tables) by default, and a carriage return and line
feed (CR/LF) are added to each line before the data is compressed into the archive.
Binary files are not converted.

114

The default is *DETECT; where PKZIP attempts to make a determination based on
the nature of the data itself. The program will read in a portion of the data, evaluate
it, and determine the appropriate process.

Note: This will lower performance time. A message will display the type used when
compressing.

Use of text file option is usually faster because PKZIP has to process less data than
with *BINARY, but more processing may also take place to perform the translation.

If the file is a SAVF or a database file (with DBSERVICE(*YES)), then the file will be
processed as binary regardless of what option is specified.

*BINARY Specifies that the files selected are binary files and no
translation should be performed.

*DETECT PKZIP will try to determine the data type of text or
binary.

*EBCDIC Specifies that the files selected are text files and leaves
it in EBCDIC without performing any translation. This is
good only if the files are to be used on an IBM i or IBM-
type mainframe. If they will be unzipped to a PC file,
then a translation from EBCDIC to ASCII is required.

*FIXTEXT Specifies that the files selected are text files with a fixed
record length based on the IBM i file’s record length and
translation will be performed using the translate tables
specified in the TRAN option. This means the
compressed file will contain records with trailing spaces
followed by a CR and LF. This is only valid for QSYS
library file types as files in the IFS do not contain a
record length.

*FIXTXTN This option is the same as *FIXTEXT except it will accept
files with null capable fields, therefore eliminating i/OS
data mapping errors.

*TEXT Specifies that the files selected are text files and
translation will be performed using the translate tables
specified in the TRAN option.

FNE

Requires Smartcrypt

FNE(*YES|*NO *YES|*NO)

File Name Encryption :
 Create FNE Archive *NO *NO, *YES
 Overwrite In FNE *NO *NO, *YES

 115

FNE(*NO *NO)

Specifies the activation and use of the file name encryption feature (see “What is File
Name Encryption?” and the System Administrator’s Guide for more information).

The first option controls the creation of an archive with file name encryption.

*NO Do not create the new/updated archive as a file-name-
encrypted archive.

*YES Create the new or updated archive as a file-name
encrypted archive. If the archive exists, then the
security features will be defined by the inputted FNE
archive. If no archive with this name exists, the new
file-name-encrypted archive will use the encryption
method defined with ADVCRYPT parameter and the
PASSWORD and/or ENTPREC parameters.

The second option controls the overwriting of a file-name-encrypted input
archive to remove the file name encryption. This option is used with the first
option of *NO (do not create a file-name-encrypted archive), and with an
existing file-name-encrypted archive is input for update. Coding this option to
*YES indicates that you know that the input archive is file-name-encrypted
and you want to overwrite it to produce an archive that is not file-name-
encrypted.

*NO Do not allow an existing file-name-encrypted archive to
be changed to a non-file-name-encrypted archive.

*YES Allow an existing file-name-encrypted archive to be
changed to a non-file-name-encrypted archive when
archive is updated.

FTRAN

FTRAN(*ISO88591 |*INTERNAL| Member Name)

Specifies the translation table for use in translating file names, comments, and
passphrase from the IBM i EBCDIC character set to the character set used in the
archive file (normally ASCII character set). A default internal table is predefined. See
Appendix D for additional information.

*ISO88591 The predefined internal table for translation. This table
provides translation that is consistent with the ISO
8859-1 definitions. This table uses the EBCDIC code
page 037 and the ASCII code page 819 for translation.

*INTERNAL To provide some compatibility to pre V8 version,
*INTERNAL will use the predefined internal tables that
were the default in V5 PKZIP.

membername Specify the member name in the file PKZTABLES that
will be parsed and used to translate "file names and
comments" files to the archive character set. The
member should have the exact format of member

116

ISO9959_1 in file PKZTABLES. See Appendix D for
information on defining translation tables.

GZIP

GZIP(*YES|*NO)

If this option is set to *YES, PKZIP will create a compressed archive in the GZIP
format. The GZIP format only allows for one file or member per archive and all text
data is stored in ISO 8859- 1 (LATIN- 1) character set. The GZIP format is very
different from the Smartcrypti archive format, a program that can process
Smartcrypti archives will not necessarily process a GZIP archive correctly. The GZIP
archive created conforms to the GZIP specifications RFC1951 and RFC1952.

Do not use this option if the archive is to be unzipped on another platform where
GZIP compatibility is not confirmed.

The allowable values are:

*YES PKZIP will create a compressed archive in the GZIP
format.

*NO PKZIP will create an archive in the Smartcrypti format.
This is the default.

IFSCDEPAGE

IFSCDEPAGE(*NO| Code-Page)

If this option is set to *NO, PKZIP will read IFS files using the code page that is
registered for the file. Otherwise, PKZIP will read IFS files with the specified code
page.

This parameter also controls the spool file ASCII conversion for *TEST and *PDF
documents. When *NO is specified for spool Files, the conversion will use code page
819.

The allowable values are:

*NO PKZIP will read IFS files with the code page registered
for the file. If the file is a spool file, the code page 819
will be used. This is the default.

Code-Page PKZIP will read IFS files with the specified code page
value. If the file is a spool file, it is the code page that a
spool file will use for ASCII translation.

INCLFILE

INCLFILE(*NONE| path/filename)

This parameter specifies the file containing the list of files to be selected for
inclusion. This can be used with or without the FILES parameter. See parameter
TYPLISTFL for file system type information.

 117

*NONE No Include list file will be processed. This is the default.

path/filename Enter the file path and name of the file to process. The
layout depends on which file system you want to create
the file in.

Library File System:
The format is "library/file(member)".

Integrated File System (IFS):
The format is "path1/path2/../pathn/filename".

MSGTYPE
Outlist Details:
 Type *BOTH *BOTH, *SEND, *PRINT
 License Info. *NORMAL *NORMAL, *SHORT, *NONE

Or

MSGTYPE(*SEND)
MSGTYPE(*BOTH *SHORT)
MSGTYPE(*BOTH *NONE)
MSGTYPE(*PRINT)

This parameter specifies where displayed output will be outputted and the type of
licensing splash screen to provide.

Detail Type (*BOTH |*PRINT |*SEND)

Specifies where the display of messages and information should be shown. The
PKZIP program has the ability to send messages that appear on the log and/or the
ability to print to stdout and stderr. If working interactively, stdout and stderr will
show upon the dynamic screen. If submitted via batch, you can override them to
print in an OUTQ or build a CL and save them to an outfile.

*BOTH Send the information to the log with send message
commands and also to stdout and stderr

*PRINT Send the information to stdout and stderr

*SEND Send the information to the log with send message
commands

License Info (*NORMAL |*SHORT |*NONE |*COPYRIGHT)

Specify what type of Smartcrypti license and copyright information to display.

*NORMAL Displays all license and copyright information

*SHORT Displays base licensing/copyrights

*NONE Displays only registration information

*COPYRIGHT Displays Copyright and trademark details from
$COPYRIT file in the product distribution library.

118

NSSRULES

Requires Smartcrypt

NSS Process Settings:
 NSS Classify Archive *SYSTEM *VALIDATE, *WARN, *NONE...
 + for more values
 NSS Check Archive State . . . *SYSTEM *NO, *WARN, *FAIL, *SYSTEM

Or

NSSRULES(INACTIVE)
NSSRULES (SECRET_SUITEB_REQPLUS *WARN)
NSSRULES (TOPSECRET_SUITEB_STRICT *SYSTEM)

The NSS rules parameter controls the enterprise settings for adhering to their NSS
process. There are currently two option settings for NSSRULES.

NSS Classify Archive (*SYSTEM | *NO | INACTIVE | SECRET_SUITEB_REQPLUS |
SECRET_SUITEB_STRICT | TOPSECRET_SUITEB_REQPLUS |
TOPSECRET_SUITEB_STRICT)

The NSSCLASSIFY setting governs enablement of SECRET and TOP SECRET
classification associated with Suite B cryptographic algorithms as specified by the
National Institute of Standards and Technology (NIST) for protecting National
Security Systems (NSS). Suite B includes cryptographic algorithms for encryption,
digital signature, and hashing.

The default is *SYSTEM and, unless it is modified, Smartcrypt will use the enterprise
setting from PKCFSEC .

• *SYSTEM - All filter policies are from the global settings.

• *NO / INACTIVE - No classification criteria enforcement
is done.

• SECRET_SUITEB_ REQPLUS / SS_REQP - A restriction
to algorithms and key strength specifications associated
with Classification level SECRET or better are to be
enforced.

• SECRET_SUITEB_STRICT / SS_STRICT - A restriction
to algorithms and key strength specifications associated
with Classification level SECRET are to be enforced
exactly.

• TOPSECRET_SUITEB_REQPLUS / TS_REQP - A
restriction to algorithms and key strength specifications
associated with Classification level TOP SECRET or better
are to be enforced.

• TOPSECRET_SUITEB_STRICT / TS_STRICT - A
restriction to algorithms and key strength specifications
associated with Classification level TOP SECRET are to be
enforced exactly.

 119

NSS Check Archive State (*NO | *WARN | *FAIL |*SYSTEM)

The NSSCHECK setting is used during the updating of an archive in concert with a
NSSCLASSIFY specification level to be checked for authentication.

The default is *SYSTEM and, unless it is modified, Smartcrypt will use the enterprise
setting from PKCFSEC.

• *SYSTEM - Indicates the authentication processing that
is set in the environmental setting will be used.

• *NO - No check will take place.

• *WARN - Processing continues. Archive updating is
permitted to complete. A warning message AQZ0060
“Smartcrypt ZIP ending with Warnings for <Suite B
Issues>” will be returned instead of messages AQZ0020
or AQZ0022.

• *FAIL – Archive updating processing will be terminated.
For all actions, the message AQZ0022 “Smartcrypt ZIP
Completed with Errors” will be returned when a mismatch
occurs.

PASSWORD

PASSWORD(Archive Passphrase)

Specifies an encryption passphrase for files being added to an archive. This
passphrase may be up to 260 characters in length and is case sensitive. All files
selected for archiving will be encrypted using the specified passphrase. If a
contingency key is coded for the enterprise, certificate-based encryption is done for
the key in addition to the passphrase-based encryption. The length range of the
passphrase for Smartcrypt is defined for the enterprise settings by PKCFGSEC.

Note: There is no way to extract the passphrase used from the archive data. If the
passphrase is forgotten, the file will become inaccessible. If files in an archive need
to have different passphrases, PKZIP must be run for each passphrase required.

Since the passphrase is entered in EBCDIC, the translation table referenced in the
FTRAN parameter is used to translate it to an ASCII format. In order to be able to
use this passphrase on other platforms, care should be taken to assure that there is
a correct translation of the EBCDIC character to a valid ASCII character. For this
reason, creating a passphrase using standard character set characters is safer for
use in other environments. Care should also be taken when using the FTRAN()
override with a passphrase encryption. To extract passphrase-protected files, the
same FTRAN() override option is required.

If the contents of the PASSWORD() parameter starts with the key word *INLIST;,
then the passphrase will be retrieved from the Inlist file defined in the PASSWORD()
parameter.

120

*INLIST Usage

To utilize the inlist file for a passphrase, the PASSWORD parameter must start with
the keyword *INLIST;. If the inlist file is not from the same file system that is set
with the TYPLISTFL(*IFS/*DB) parameter, then code a *DB; or *IFS; to describe the
file system where the following inlist will reside. Following the *INLIST; or
*IFS;/*DB;, the file name should be specified. Using the inlist method for
passphrase allows the opportunities to secure a file of a passphrase with the IBM i
object authorities. For more information on INLIST see Appendix C.

Examples of PASSWORD() passphrase inlist file coding:

• PASSWORD('*INLIST;ATEST/PPINLIST(MBR01)')

where TYPLISTFL(*DB) and the file is PPINLIST in library ATEST for file
member MBR01

• PASSWORD('*INLIST;*DB;ATEST/PPINLIST(MBR01)')

demonstrates overriding the TYPELISTFL

• PASSWORD('*INLIST;/myroot/PKINLIST/PP01.inl')

where TYPLISTFL(*IFS) and the path to the inlist file is ‘/myroot/PKINLIST/’
with stream file name of ‘PP01.inl’

• PASSWORD('*inlist;*IFS;/myroot/PKINLIST/PP01.inl'))

demonstrates overriding the TYPELISTFL

The passphrase inlist file must contain “PASSPHRASE={” and be terminated by the
“}” character. The passphrase used will be all of the bytes that exist between the {}
not including the { or the }. Null bytes and end-of-record bytes are ignored.
Therefore the passphrase structure should be only on one record of an inlist file.

Example of contents of an inlist file:
PASSPHRASE={x12345678901234x}

The passphrase used will be x12345678901234x in EBCDIC. This will then be
translated to ASCII using the FTRAN parameter.

Care should be taken that the file is EBCDIC and has a correct code page. It will use
all bytes of data between the {}, even non-displayable bytes.

After a passphrase inlist file is set up, it should be tested with both PKZIP and the
PKUNZIP command.

HEXKEY:<display-hex value>

This coding form (HEXKEY: in mixed case) provides for the specification of a
symmetric cipher ZIP archive file protection.

HEXKEY: is used to provide a binary key for qualifying algorithms to protect files in a
ZIP archive.

The key is provided in a display-hex format, where 2 hexadecimal character values
comprise 1 byte (8 bits) of key information. The number of hex characters specified
must match the selected encryption method or ADVCRYPT key strength for the
cipher to produce the correct strength.

 121

Encryption Method Required Hex Characters

3DES 42 characters (168 bits)

RC4 32 characters (128 bits)

AES128 32 characters

AES192 48 characters

AES256 64 characters

Example: For AES128; PASSWORD('HEXKEY:12345678123456781234567812345678')
 VPASSWORD('HEXKEY:12345678123456781234567812345678')

PKOVRTAPF

New Archive Tape Overrides:
 Tape Device *TAPF Tape Device
 Tape File Label *TAPF Tape Header
 Tape Sequence Nbr *TAPF 1-16777216, *TAPF, *END
 File expiration date *TAPF Date, *NONE, PERM, *TAPF
 End Of Tape Option *TAPF *TAPF, *REWIND, *UNLOAD...
 Shadow Dir File *CSDF *CSDF, *NO

Or

PKOVRTAPF(*TAPF 'ARCHIVE_TEST01' 1 '11/08/2005' *TAPF)
PKOVRTAPF(*TAPF 'ARCHIVE_TEST02' *END *TAPF *LEAVE, *NO)
PKOVRTAPF(TAP02 'ARCHIVE_TEST03' *END *PERM *LEAVE *CSDF)

This parameter defines the override options for the tape device file specified in the
archive parameter. These options are active only if TYPARCHFL(*TAP) is set to write
the archive directly to a tape. When *TAPF is specified, the value from the current
tape device file is used. For more information on these options, refer to the CRTTAPF
command.

Tape Device (Tape Device |*TAPF)

Overrides the DEV() parameter of the tape device file. Specifies the name of a tape
device used with this device file to perform output data operations.

Tape File Label (label string |*TAPF)

Overrides the LABEL() parameter of the tape device file. Specifies the data file
identifier of the data file that is being processed by this tape device file. The data file
identifier is defined for standard-labeled tapes and is stored in the header label
immediately before the data file that the header describes. For more details on the
specification for this 17-byte option, refer to the CRTTAPF command and tape label
processing.

Tape Sequence Number (*END |sequence nbr |*TAPF)

Overrides the SEQNBR() parameter of the tape device file.

This specifies the file sequence number of the data file on the tape being processed.
For standard-labeled tapes, this four-position file sequence number is read from the
first header label of the data file.

122

• *END - The file is written after the last file currently on the tape. If no
files exist on the tape then it will be fist file on the tape.

• Sequence number - Specifies the file sequence number of the file being
processed on this tape.

Tape File Expiration Date (Date |*NONE |*PERM |*TAPF)

Overrides the EXPDATE() parameter of the tape device file. This option specifies the
expiration date of the data file used by this device file. The data file is protected and
cannot be written over until the specified expiration date has past.

• *NONE - No expiration date for the data file is specified. The file is not
protected.

• *PERM - The data file is protected permanently. The date written on the
tape is 999999.

• Date - Specify the date on which, and beyond which, the data file is no
longer protected. The date format should be mm/dd/yyyy such as
‘11/08/2019’.

End of Tape Option (*TAPF |*REWIND |*UNLOAD |*LEAVE)

Overrides the ENDOPT() parameter of the tape device file. This option specifies the
operation that is automatically performed on the tape volume after the operation
ends. If more than one volume is included, this parameter applies only to the last
tape volume used; all other tape volumes are rewound and unloaded when the end
of the tape is reached.

• *REWIND - The tape is rewound, but not unloaded.

• *UNLOAD – The tape is automatically rewound and unloaded after the
operation ends.

• *LEAVE – The tape does not rewind or unload after the operation ends. It
remains at the current position in the tape drive.

Shadow Dir File (*CSDF |*NO) New Option

Build a shadow directory file for efficiency when viewing or extracting a tape archive.

• *CSDF - The default is to build the Shadow Directory File after building
the tape archive file.

• *NO – Do not create Shadow Directory File. Only the tape archive file will
be written to tape.

SELFXTRACT

SELFXTRACT (*MAINTAIN| *REMOVE | Self extraction member name)

This licensed feature specifies the action to take concerning self-extracting archives.
The actions are to maintain the current archive as is, create the new archive with a
self-extracting preamble, or to remove the self-extracting preamble if one exists in
the archive.

 123

The self-extracting programs are held as binary entities in the Smartcrypti library in
the file PKZIPSFX. The appropriate member is loaded and the executable data copied
to the beginning of the archive as a preamble when requested.

The resulting archive can still be processed by Smartcrypti as a normal ZIP archive.

The allowable values are:

MAINTAIN If the current archive contains a self-extracting
preamble, it will be maintained at the beginning of the
updated archive.

Self extraction member name See active table below.

*REMOVE If the current archive contains a self-extracting
preamble, it will be removed.

Self-extraction member name active table:

self_extraction_program_name
Values

Description

SF6AIX IBM AIX Version 4.3 and above

Size: 667K

AIX is an alias for this value.

SF6HP HP/UX Version 10.20 and above

Size: 774K

HP_UNIX is an alias for this value.

SF6LNX2I LINUX running the 2.4 or later kernel on x86 with glibc-2.2.4

Size: 410K

LINUXINTEL is an alias for this value.

SF6SUN Sun Solaris 2.6 and above

Size: 431K

SUN_UNIX is an alias for this value.

SFAWINC Microsoft Windows command line (Windows 98, Windows Me,
Windows NT 4.0, Windows 2000, and Windows XP systems.
NT 4.0, must include Microsoft Internet Explorer 4.0 or
greater)

Size: 353K

WINDOWS is an alias for this value.

SFAWING Microsoft Windows GUI (same as SFAWINC)

Size: 357K

SFCAIX IBM AIX Version 5.1 and above

Size: 2,354K

SFCHP HP/UX Version 11.00 and above

Size: 2,496K

SFCLNX2I LINUX running the 2.4 or later kernel on x86 with glibc-2.2.5

Size: 1,523K

124

self_extraction_program_name
Values

Description

SFCSUN Sun Solaris 2.8 and above

Size: 1,940K

SFCWINC Microsoft Windows command line (Windows 2000, Windows
2003, Windows XP Pro and Windows Vista systems)

Size: 736K

SFCWING Microsoft Windows GUI (same as SFCWINC)

Size: 796K

SF2AIX IBM AIX Version 4.0 and above

Size: 148K

SF2HP HP/UX Version 9.0 and above

Size: 145K

SF2LNX2I LINUX Kernel 2.x for Intel (target system run-time
requirements: Reference PKZIP Support Notice #13
02/16/2001 regarding LINUX target system support files ld.so-
1.9.5-13.i386.rpm and libc-5.3.12-31.i386.rpm)

Size: 93K

SF2SUN Sun Solaris 2.3 (SunOS 53) and above

Size: 119K

SF2WINC Microsoft Windows (95 and above)

Size: 89K

Usage Notes:

The resulting archive can still be processed by Smartcrypti as a normal ZIP archive.

In most cases, to include the path, use STOREPATH(*REL) or
STOREPATH(*NOROOT). Do not use STOREPATH(*YES) with self-extracting
archives.

Use the ISRTPATH parameter to preset a path to store the files.

When transferring a self-extracting archive to a target system, be sure to transfer
the archive in BINARY format and adhere to requirements for executables in that
environment. (For example, a Windows program should be saved with an application
extension of EXE, and a UNIX file attribute should have executable authorization set
via the UNIX chmod command).

Four version levels of self-extraction programs are provided for the Windows
platform (version 2.5, version 6.1, version 10.0 and version 12) while the UNIX
platforms are provided with three self-extraction levels (version 2.5, version 6.1 and
version 12). The version 2.5 components are prefixed with “SF2”. The version 6.1
components are prefixed with “SF6”. The version 10.0 components are prefixed with
an “SFA” (A being 10 hexadecimal). Finally, the version 12.0 components are
prefixed with an “SFC” (C being 12 hexadecimal). In addition to the command line
versions of the Windows extractors, GUI versions are also provided.

The self-extraction programs provided at the 2.5 level of PKUNZIP have the following
restrictions. Take care to create the self-extracting archive in keeping with these
restrictions. If any of the disallowed capabilities are required on the target system,

 125

use the 6.1 or higher versions of the self-extractor instead. Archives created using a
version 2.5 self-extraction program can be processed by a higher level version of
PKUNZIP.

• The number of files in the archive must be limited to 65,535 or less

• Strong encryption is not supported

• Authentication of digital signatures is not supported (although the
signatures within the archive will be maintained and can be authenticated
by appropriate Smartcrypt products)

• The size of the archive should not exceed 2 gigabytes

• The uncompressed size of individual files should be less than 2 gigabytes
(4 gigabytes on some UNIX systems)

Key Functional Differences Among the Self-Extractor Levels

Extractor Code
Level

ZIP64 Strong File-
data
Decryption

Strong File
name

Decryption

ZDW Support

SF2AIX 2.5 No No No No

SF2HP 2.5 No No No No

SF2LNX2I 2.5 No No No No

SF2SUN 2.5 No No No No

SF2WIN 2.5 No No No No

SF6AIX 6.1 Yes Yes No No

SF6HP 6.1 Yes Yes No No

SF6LNX2I 6.1 Yes Yes No No

SF6SUN 6.1 Yes Yes No No

SFAWINC 10.0 Yes Yes Yes No

SFAWING 10.0 Yes Yes Yes No

SFCAIX 12 Yes Yes Yes Yes

SFCHP 12 Yes Yes Yes Yes

SFCLNX2I 12 Yes Yes Yes Yes

SFCSUN 12 Yes Yes Yes Yes

SFCWINC 12 Yes Yes Yes Yes

SFCWING 12 Yes Yes Yes No

SFUSER

SFUSER (*CURRENT|*ALL |User Name List)

Specifies the user names that created spool files that will be selected. This value is
ignored if SFJOBNAM is coded.

126

The allowable values are:

*CURRENT Only files created by the user running this command are
selected.

*ALL Files created by all users are selected.

User Name Specify up to 10 user names. Only files created by
those users are selected.

SFQUEUE

SFQUEUE (*ALL |Name|*LIBS)

Specifies the output queue that will be searched for the spool file selections. If no
OUTQ library is specified, it will default to *LIBL.

The allowable values are:

*ALL Files on any device-created or user-created output
queue are selected.

OUTQ The OUTQ that will be searched.

OUTQ Library The library where the OUTQ resides. Defaults to *LIBL.

*LIBS *LIBS will search all OUTQ that exist in the specified
OUTQ Library. If *LIBS is selected then the library
cannot be blank, nor contain *LIBL nor *CURRENT.

SFFORM

SFFORM (*ALL | *STD| Form Type)

Specifies the spool file form type that is on the spool files that will be selected.

The allowable values are:

*ALL Files for all form types are selected.

*STD Only files that specify the standard form type are
selected.

Form Type Only spool files with this specific form type will be
selected.

SFUSRDTA

SFUSRDTA (*ALL| User Data)

The user data tag associated with the spool file to select.

The allowable values are:

*ALL Files with any user data tag specified are selected.

 127

User Data Only spool files with this specific user data tag will be
selected.

SFSTATUS

SFSTATUS (*ALL |*READY|*HELD|*CLOSED|*SAVED|*PENDING|*DEFERRED)

Specifies the status of the spool files to be selected. Up to four status definitions can
be selected for one run.

The allowable values are:

*ALL All spool file status will be considered for selection.

*READY Only spool files with a status of *READY will be selected.

*HELD Only spool files with a status of *HELD will be selected.

*CLOSED Only spool files with a status of *CLOSED will be
selected.

*SAVED Only spool files with a status of *SAVED will be selected.

*PENDING Only spool files with a status of *PENDING will be
selected.

*DEFERRED Only spool files with a status of *DEFERRED will be
selected.

SFJOBNAM

SFJOBNAM(Blank|*|Spool File Jobname/User/Job Number)

Specifies the job name, user name, and job number that will be used to select spool
files. If anything other than blanks is in SFJOBNAM parameter, it will be used as the
primary selection criteria. If any of the three fields (job name, user name, and job
number) are specified, then all three fields must be entered and be valid.

The allowable values are:

Blank This is the default selection. This will cause all other
selection criteria to be used for spool files.

* The * will cause the current job-name/user-name/job
number to be used to select spool files.

Job-name Specify the name of the job to be selected. If no job
qualifier is given, all of the jobs currently in the system
are searched for the simple job name.

User-Name Specify the name that identifies the user profile under
which the job is run.

Job-Number Specify the job number assigned by the system.

128

SFTARGET

SFTARGET (*SPLF|*TEXT|*PDF|*TEXT1|*TEXT2|*TEXTFC|*PDF|*PDFLETTER|*PDFLEGAL)

Specifies the format of the file that will be stored in the archive.

The allowable values are:

*SPLF This is the default selection. This will compress the
spool file in a spool file format with all of the spool file
attributes. This format is only valid on an AS/400. If
the archive is extracted, it will take on the latest spool
file settings, such as, job name, user, job number, spool
file number, etc. The suffix for this selection is SPLF.
Parameter SFTGFILE is required to be *GEN1 for
SFTARGET(*SPLF).

*TEXT The spool file will be saved in the archived as an ASCII
text document. The suffix for this selection is .TXT.
Each new page will have a form feed control character.

*TEXT1 The spool file will be saved in the archived as an ASCII
text document. The suffix for this selection is .TXT.
Each new page will have a carriage control and line feed
control characters.

*TEXT2 The spool file will be saved in the archived as an ASCII
text document. The suffix for this selection is .TXT.
Each page will have a carriage control and line feed
control characters for blanks lines to fill out a page with
the number lines required by the spool file attribute.

*TEXTFC The spool file will be saved in the archive as an ASCII
Text document. The suffix for this selection is .TXT.
Each new page will have a form feed control character.

*PDF The spool file will be saved in the archived as a PDF text
document. The suffix for this selection is .PDF. The size
will be adjusted based upon the width and length of the
spool file.

*PDFLETTER The spool file will be saved in the archived as a PDF text
document. The suffix for this selection is .PDF. The size
will be adjusted based upon the width and length of the
spool file.

*PDFLEGAL The spool file will be saved in the archived as a PDF text
document. The suffix for this selection is .PDF. The size
will be adjusted based upon the width and length of the
spool file.

SFTGFILE

SFTGFILE (|*GEN1|*GEN2|*GEN1P|File Name)

Specifies the how the file name will be stored in the archive.

 129

The allowable values are:

*GEN1 GEN1 is the default selection. This generates a very
specific name using most of the spool file name
attributes to form the file name so that it will not be
duplicated. *GEN1 is required if SFTRAGET is *SPLF.
The name will be built as follows:

 “Job-Name/User-Name/#Job-Number/Spool-File-
Name/Fspool-File-Number.Suffix”

 ”MYJOB/BILLS#152681/INVOICE/F0021.SPLF”

 The suffix is dependent on the SFTARGET setting.

*GEN1P *GEN1P generates the same file name as *GEN1 except
instead of a '/' separator, *GEN1P will use a '.' as name
separator.

*GEN2 *GEN2 uses the spool file name and appends the spool
file number followed by the suffix that is depended on
the SFTARGET setting. Caution should be taken in that
a duplicate file name in the archive could be created. An
example of GEN2 is a spool file INVOICE with spool file
number of 21 that will be converted to a text file will
generate a file name of INVOICE21.TXT.

File Name This parameter should only be used when selecting one
specific spool file where you want a specific file name.

SPLFILE

SPLFILE (*ALL| Spool File Name)

Specifies the spool file name that will be selected. This parameter is used along with
all the other spool file selection parameters to determine the spool files to select.

The allowable values are:

*ALL This is the default setting. *ALL indicates that spool file
name is not important.

Spool File Name A specific spool file name that will be searched for and
selected.

SPLNBR

SPLFILE (*ALL|*LAST| Spool File Number)

Specifies the number of the spool file from the job whose data records are to be
selected. If *ALL is coded then all file numbers are considered. This parameter is
only valid when the SFJOBNAM parameter or SPLFILE is used. This parameter is used
along with all the other spool file selection parameters to determine the spool files to
select.

The allowable values are:

130

*ALL This is the default setting. *ALL indicates that spool file
number is not important.

*LAST The spooled file with the highest number is used.

Spool File Number A number 1-9999 to specify the number of the spooled
file whose data records are to be selected.

SIGNERS

Requires Smartcrypt

Signing Certificates :
 File/Archive *FILE *FILE, *ARCHIVE, *ALL
 LookUp Type *DB *DB, *FILE, *MBRSET, *INLIST
 Signer ___
 Passphrase (If Private) . . . ___
 Required *RQD *RQD, *OPT

Or
SIGNERS((*FILE *MBRSET
 'pkwareCertAdmin04.pfx' (passphrase) *RQD))
SIGNERS((*FILE *FILE
 '/yourpath/PKWARE/Cstores/private/pkwareCertAdmin04.pfx' (passphrase) *RQD))
SIGNERS((*FILE *FILE
 '/yourpath/PKWARE/Cstores/private/pkwareCertAdmin04.pfx' (‘mypassphrase’) *RQD))
SIGNERS((*FILE *DB
 ‘EM=bill.somebody@pkware.com' (passphrase) *RQD))
SIGNERS((*FILE *INLIST 'ATEST/INLIST(ENGNEER1)' *N))

This parameter identifies the public key certificate with private key that is to be used
to digitally sign files to be added to the archive and/or the archive directory. Multiple
signing certificates may be applied to the files but only one signer is allowed to sign
the archive directory. Signing an archive by signing its central directory enables
people who receive the archive to confirm that the archive as a whole is not
changed. By contrast, signing only individual files in an archive enables people to
confirm that the particular signed files are unchanged but leaves open the possibility
that the archive has had files added or removed.

There are five options for SIGNERS.

Signing Type File/Archive (*FILE |*ARCHIVE |*ALL)

The File/Archive selection determines whether the files, archive or both are to be
signed during the ZIP run. Only one signer can be specified for an archive. If the
lookup type is *INLIST, then this option will be ignored and will pick up from the
records in the inlist file.

• *FILE – All new files being compressed in the run will be signed by this
private key and a signature entry will be added to the archive.

• *ARCHIVE – The archive directory will be signed by this private key and a
signature entry will be added to the archive.

• *ALL – Both *FILE and *ARCHIVE for the signer will be used.

 131

Lookup Type (*DB |*FILE |*MBRSET |*INLIST)

The lookup type would be the type of signer search that will be used for the signer
string to lookup the private key.

• *DB - The signer string is defined to search using the Certificate Locator
Database to access the digital certificate and private key.

• *FILE - The signer string is defined to read a specific file in a specific path
in the IFS in order to access the digital certificate and private key.

• *MBRSET - The signer string is defined to read this specific file from the
enterprise private certificate store to access the digital certificate and
private key.

• *INLIST- The signer string defines a specific file that will contain one to
many signers. The TYPLISTFL parameter must specify the file type for the
inlist.

Signer (The signer string name)

The signer string format depends on what was specified for the lookup type.

• If lookup type is *DB, the signer string will either be an email address or
the common name of the certificate. This depends on the configuration
setting in PKCFGSEC parameter CERTDB. To override the default selection
mode, you can prefix the string with EM= for email, or CN= for the
common name.

For example:
SIGNERS((*FILE *DB ‘bill.somebody@pkware.com' (passphrase) *RQD)
 (*ARCHIVE *DB ‘CN=bill somebody' (passphrase) *RQD)
 (FILE *DB ‘EM=bill.somebody@pkware.com' (passphrase) *OPT))

• If lookup type is *FILE, the signer string is defined to read a specific file in
a specific path of the IFS. This file should be public key X.509 with the
private key X.509 certificate file.

For example:
SIGNERS((*ARCHIVE *FILE '/yourpath/PKWARE/Cstores/private/pkwareCertAdmin04.pfx'
(passphrase) *RQD))

The digital certificate file with the private key ‘pkwareCertAdmin04.pfx’ will be
in the full path '/yourpath/PKWARE/Cstores/private’.

• If lookup type is *MBRSET, the signer string is defined to read a specific
file from the public certificate store and/or the private certificate store of
the IFS. This file should be public key X.509 with the private key X.509
certificate file.

For example:
SIGNERS((*ALL *MBRSET 'pkwareCertAdmin04.pfx' (passphrase) *RQD))

The digital certificate file ‘pkwareCertAdmin04.pfx’ will be in the full path of
the private certificate store defined in the enterprise security configuration
private store (parameter CSPRV). Since the passphrase was included, the file
will be searched for in the enterprise security configuration private store
(parameter CSPRIV).

132

• If lookup type is *INLIST the signer string defines a full file name of an
input list file that contains records of SIGNERS shortcut parameters. The
type of file will exist in the QSYS library file system if TYPLISTFL(*DB) is
set and will be a path file name in the IFS if TYPLISTFL(*IFS) is set. The
format of the SIGNERS shortcut parameters are defined below in the
*INLIST usage section.

Passphrase

This designates the passphrase that is required for a private key (PKCS#12 file).
When a value is specified, the target must be an X.509 PKCS#12 private key
certificate.

The PASSWORD value may contain blanks and is delimited by the closing right
parenthesis ")" of the signing command.

Required (*RQD|*OPT|*SAME)

If *RQD then this signer MUST be found during the selection and the certificate
MUST be a valid certificate with a private key or the run will fail.

Usage Notes:

A NULL file (binary file having zero bytes of data) will be signed. However, note that
the digital signature is based on a fixed hash value.

The entire data stream of each file is run through the hash algorithm before
compression or encryption. However, file text data is translated before hashing so
that the receiving system is able to hash the identical stream after
decryption/decompression.

The processor requirement for a file signature is directly related to the size of the
file(s) being signed and/or authenticated (see SIGN_HASHALG). Therefore, when
processing costs are a consideration, the decision whether to use SIGNERS to sign
large files should be based on the business case. Sometimes signers for the archive
may be more appropriate. (The directory size is proportional to the number of files in
the archive, not the physical size of the file data.)

A separate signing operation is performed for each supplied certificate, for each file.
Processor and elapsed time will be impacted in proportion to the number of
signatories and files selected.

The number of file signatures that can be held for each file is constrained by a
number of factors. These include EXTRAFLD(*YES) and DBSERVICE(*NO), the size of
the signatures generated (based on the size of the certificate information), the
number of certificates in the authenticating certificate authority chain, the number of
different certificate authorities used in association with the signing certificates, if
FNE(*YES) is specified, and the number of recipients for certificate-based encryption
of files. For planning purposes, typical ZIP operations will support up to 10 file
signatories as a rule, although more or fewer may be achieved in practice.

It is important that the passphrase is entered in the correct case. Any variation in
case or misspelling will result in a public key certificate access attempt (which will fail
for a private key PKCS#12 certificate). Please note that passphrases will be masked
out in all output displays.

 133

A local certificate store configuration is required to complete the processing of this
command. Even when a direct FILE specification is made to locate the private key
certificate, the CS and ROOT certificate store components must be accessible to
complete the certificate signing chain within the archive. This information is required
to complete authentication processing on the target system when the local certificate
store on that system does not contain the certificate authority chain required to
validate TRUST (see PKCFGSEC).

Processing will be terminated if none of the requested certificates can be accessed,
regardless of the “R” required flag. If multiple requests are made and at least one
signature is found, processing will continue normally.

Signed files are tolerated by prior releases of Smartcrypti but are not processed for
authentication.

For inlist that contains a passphrase to open a private certificate, make sure that the
security is sufficient to only allow the owner of the certificate to have read access.
Otherwise this would leave a security hole where others could browse the
passphrase.

*INLIST Usage:

If *INLIST is defined on the SIGNERS parameter, then the signer filed will be a file
that Smartcrypt will read to include the signer. The format is very similar to the
SIGNERS parameter described above except each line signer starts with
“{SIGNERS=” and is terminated by the “}” character with the semi-colon “;” as a
separator for each entry.

{SIGNERS=Signing Type, Lookup Type; Signer; Passphrase; Required}

Signing Type See Signing Type in SIGNERS

Lookup Type See Lookup Type in SIGNERS excluding the INLIST

Signer See Signer in SIGNERS.

Passphrase See Passphrase in SIGNERS.

Required See Required in SIGNERS, but use RDQ for *RQD and OPT for
*OPT.

Sample 1: tstsign_db1.inlist.
{SIGNERS=File;DB;EM=PKTESTDB4@nowhere.com;PKWARE;RQD}

Sample 2: tstsign_mb2.inlist.
{SIGNERS=ARCHIVE;MBRSET;pktestdb3.pfx;PKWARE;RQD}

SIGNPOL

Requires Smartcrypt

Signing Filters:

134

 Validate Level *SYSTEM *VALIDATE, *WARN, *NONE...
 Filters *SYSTEM *SYSTEM, *ALL, *NONE...
 + for more values
 Signing Hash *SYSTEM *SYSTEM, *SHA1, *MD5...

Or

SIGNPOL(*WARN (*SYSTEM))
SIGNPOL(*WARN (*ALL *NOTTRUSTED *SYSTEM))
SIGNPOL(*SYSTEM (*ALL *NOTEXPIRED *SHA256))

Signing Hash (*SHA1 | *MD5 | *SHA256 | *SHA384 | *SHA512 |*SYSTEM)

This parameter defines the Hashing algorithm that will be used when creating the
digital signature.

• *SYSTEM - Indicates the signing hash method for the
signing process set in the environmental setting will be
used.

• *SHA1 - The default algorithm generates a 20-byte hash

value. This algorithm is supported by all Smartcrypt
products.

• *MD5 - This algorithm generates a 16-byte hash value.

It is included for compatibility with older releases of
PKZIP on other platforms, which previously supported
this algorithm.

• *SHA256 - A variant of the SHA-2 class of Secured Hash

algorithms producing 256 bits (32 bytes) of information.
Reference FIPS 180-2.

• *SHA384 - A variant of the SHA-2 class of Secured Hash

algorithms producing 384 bits (48 bytes) of information.
Reference FIPS 180-2.

• *SHA512 - A variant of the SHA-2 class of Secured Hash

algorithms producing 512 bits (64 bytes) of information.
Reference FIPS 180-2.

For more information on the hashing algorithms and FIPS 180 see SIGNPOL
parameters in the System Administrator's Guide.

Validate Level (*VALIDATE |*WARN |*SYSTEM)

The validate level specifies the type of signing processing that should take place if
the signer requests encounter an error. If *SYSTEM is specified, the enterprise
setting from PKCFSEC is used. If the enterprise setting is defined as Lockdown, then
this parameter cannot be revised and a warning will be issued if a change is
detected.

• *SYSTEM - Indicates the authentication processing that is set in the
environmental setting will be used.

 135

• *VALIDATE - Indicates that when authentication takes place and a failure
occurs based on the filters, the run will be considered a failure, and the
message issued at the end will indicate one or more errors during the run.

• *WARN - Indicates that when authentication takes place and a failure
occurs, the failure is only considered a warning. The messages at the end
of the run will not consider any failed filters for signer certificates as
errors.

Filters (*SYSTEM |*ALL |*NONE |*TRUSTED |*EXPIRED |*REVOKED |*NOTTRUSTED
|*NOTEXPIRED |*NOTREVOKED)

The signing filter policies settings are defined in the enterprise security file supplied
by the Smartcrypt administrator (see PKCFGSEC). These global policy settings can
be revised with sub-parameter values, but if the enterprise setting is defined as
lockdown, this parameter cannot be revised and a warning will be issued if a change
is detected. The variables are cumulative from the global setting. The setting of
these filters defines what certificates are acceptable for signing.

• *SYSTEM - All filter policies are from the global settings.

• *ALL - This sub-parameter activates all levels of authentication. If
followed by negating sub-levels, then all but those negating levels are
activated. For example: *ALL, NOTEXPIRED means that expired
certificates will not cause an authentication error, but TRUST and REVOKE
must both be satisfied.

• *NONE - Will negate all the policies.

• *TRUSTED - Each end-entity certificate used in the signature must be
traced back to a trusted root certificate. The CACA and CSROOT stores on
the local system performing the authentication check will be accessed to
determine if the entire certificate chain can be trusted. Although the root
(“self-signed”) certificate may be included within the archive, it MUST also
exist in the CSROOT store to complete the TRUSTED state.

• *EXPIRED - The digital certificates used to originally perform the signing
operation contain internal date ranges of validity. The signer operation will
fail if any of the certificates in the trust chain are not found to be within
their stated data range. Note that an end-entity certificate may have
expired at the time that the archive is being accessed, and NOTEXPIRED
may be used to continue processing.

• *REVOKED - A certificate owner may request that the issuing certificate
authority declare a certificate to be revoked and thereby no longer
consider that certificate to be valid. The signer operation will fail if any of
the certificates in the trust chain are found to have been revoked or if the
revocation status could not be determined.

• *NOTTRUSTED - Negates the *TRUSTED filter.

• *NOTEXPIRED - Negates the *EXPIRED filter.

• *NOTREVOKED - Negates the *REVOKED filter.

136

STOREPATH

STOREPATH(*REL | *NOROOT | *NO |*YES)

Specifies whether to store the full path and file name in the archive, or to just save
the file name. If the file is an IFS file type, the path is all directories, from the
current directory, to the directory of the file. In the library system, the path is the
library and the file name. The member name is considered to be the file name.

The allowable values are:

*REL Only the RELative path and file name will be stored
(i.e., No leading ‘/’). If an IFS absolute path was used
in the file selection, the leading ‘/’ would be removed
from the file name in the archive. For example if the file
is “/pkzshare/mypath1/mypath2/myfile”, then it will be
stored as “pkzshare/mypath1/mypath2/myfile”.

*NOROOT The first node of the path will not be stored. If file type
is *DB then the library will not be stored. If the file type
is *IFS the first node of the path (not including a
starting / if present) will not be stored. For example if
the file is “/pkzshare/mypath1/mypath2/myfile”, then it
will be stored as “mypath1/mypath2/myfile”.

*NO Store only the file name in the PKZIP archive.

*YES Store all paths and the file name in the PKZIP archive
including a leading ‘/’ for IFS files using absolute path
selection. This option is not recommended and is not
valid according to the APPNOTE standards for file names
in the archive.

TMPPATH

TMPPATH(*CURRENT| pathname)

Specifies a directory or library/file in which to build the temporary archive file. While
PKZIP is compressing data into an archive, a temporary archive file name is used.
The temporary file name is a 10-character name with a prefix of “PZ” followed by a
time stamp (PZtttttttt). If this option is *CURRENT, the temporary file is built in the
same directory (for library file systems it is same library/file with temporary
member) in which the new archive will be stored and is then renamed at the end of
the run to the archive name. If an override path is specified, the temporary archive
file is built into that specified path, and the file is then copied to its final archive path
at the end of the run. The temporary file name and path type will be the same as
specified for ARCHIVE. See parameter TYPARCHFL for file system type information.
Special libraries (such as QTEMP) are used frequently.

*CURRENT Specifies that the current archive path will be used (see
ARCHIVE) to build the temporary archive file
PZxxxxxxxx.

 137

pathname Specifies a path name (if using IFS such as
/PKZIP/tempdir) or a library/file (if using the library
system).

NOTE 1: When using the QSYS library file system and specifying
“qtemp” as the TMPPATH, a dynamic file name and
member name is created in the library qtemp. At the
end of the run, the file and member are removed. If
any other combination of names is used, then a dynamic
member name is created and only the member is
removed.

NOTE 2: When using the QSYS library file system and specifying
a TMPPATH, there may be a slight performance
degradation because the archive file will have to be
copied from one library/file to another library/file.
Otherwise, if *CURRENT is used, the file member name
will only be renamed.

TRAN

TRAN(*ISO88591 |*INTERNAL| Member Name)

Specifies the translation table for use with translating “data” from the IBM i EBCDIC
character set to the character set used in the archive file (normally the ASCII
character set). A default internal table is predefined (see Appendix D).

*ISO88591 The predefined internal table for translation. This table
provides translation that is consistent with the ISO
8859-1 definitions. This table uses the EBCDIC code
page 037 and the ASCII code page 819 for translation.

*INTERNAL To provide some compatibility to pre V8 version,
*INTERNAL will use the predefined internal tables that
were the default in V5 PKZIP.

Member Name Specifies the member name in the file PKZTABLES that
will be parsed and used to translate data files to the
archive character set. The member should have the
exact format of member ISO9959_1 in file PKZTABLES
(see Appendix D for information on defining translation
tables).

TYPARCHFL

Archive File:
 Type *DB *DB, *IFS, *TAP, *XDB
 Check ZIP64 *NONE *NONE, *WARN, *FAIL

Or

TYPARCHFL (*IFS)
TYPARCHFL (*DB *WARN)
TYPARCHFL (*IFS *FAIL)

138

TYPARCHFL (*TAP)

This parameter specifies the file system to create the archive and the archive
constraints.

Archive Type (*DB |*IFS |*TAP |*XDB)

Specifies the type of file system in which the archive file will exist (see parameters
ARCHIVE and TMPPATH for additional information).

*DB Archive files are to be in the QSYS library file system.
Even though *DB is working with archive files that are in
the QSYS library file system, the IFS is utilized for
performance and for large file support (ZIP64). To
provide an option for archive file creation utilizing
exclusively the QSYS library system, use
TYPARCHFL(*XDB), which supports OS400 features such
as Adopt Authority.

*IFS Archive files are to be in the integrated file system
(IFS).

*TAP Archive file will be written directly to tape. The ARCHIVE
parameter MUST be a tape device file or have attribute
*TAPF. The tape device file PKTAPEO1 is distributed with
PKZIP.

*XDB The archive files are to be in the QSYS library file
system and will exclusively use the QSYS library file
system during processing. This will force the Check
ZIP64(*FAIL). This option will not support Large File
Support or ZIP64.

Check ZIP64 (*NONE |*WARN |*FAIL)

Specify the severity of message and return code when creating or updating an
archive and ZIP64 processing is required.

*NONE No action or message when ZIP64 constraint exceeded.

*WARN Warning message AQZ0613 will be issued but processing
will continue.

*FAIL Failure message AQZ0614 will be issued and process will
cease without building a new archive.

This feature may be of value when creating archives intended for distribution to
systems that may not be able to handle the ZIP64 processing attributes. This may be
due to the UNZIP software being used on the target system or the file system for the
related OS. (For example, some UNIX or Windows FAT file systems cannot handle file
sizes greater than 4 gigabytes).

Triggers for this option include:

• More than 65,535 files are being placed into the archive

• One or more source files are greater than 4 gigabytes in size

• The amount of data written to the archive exceeds 4 gigabytes

 139

TYPE

TYPE(*ADD|*DELETE |*FRESHEN|*MOVEA|*MOVEF|*MOVEU|*UPDATE)

The TYPE keyword specifies the type of action PKZIP should perform on the ZIP
archive.

The possible actions are:

*ADD The *ADD option is the default and adds a selection of
files to the archive file. If an archive is already present,
it will be written over by the new archive file.

*UPDATE The *UPDATE option updates files which are already in
the archive file with a newer version and will also add
newly selected files that are not present in the archive
file.

*FRESHEN The *FRESHEN option updates ONLY the files which
already exist in an archive file. If the date/time of the
file is newer than the date/time of the file in the archive,
the file will be compressed and replace the one in the
archive.

*MOVEA The *MOVEA (Move and Add option) option performs the
*ADD option, and upon completion of a successful PKZIP
command, the actual file will be deleted.

*MOVEF The *MOVEF (Move and Freshen option) option performs
the *FRESHEN option, and upon completion of a
successful PKZIP command, the actual file will be
deleted.

*MOVEU The *MOVEU (Move and Update option) option performs
the *UPDATE option, and upon completion of a
successful PKZIP command, the actual file will be
deleted.

*DELETE The *DELETE option removes entries from the archive
file based upon the selection of FILES and EXCLUDE
parameters. The format of the FILES and EXCLUDE
parameters should be in the format of the files as seen
in the archive.

TYPFL2ZP

TYPFL2ZP(*DB|*IFS)

Specifies the type of file system that contains files to be zipped. Reflected for files in
parameters FILES and EXCLUDE.

*DB Files to be zipped are in the QSYS library file system.

*IFS Files to be zipped are in the IFS (Integrated File System)
- Case sensitive selection.

140

*IFS2 Files to be zipped are in the IFS (Integrated File System)
– Non-case-sensitive selection.

*DBA Files to be compressed are database files in the QSYS
library file system with database mode
"DBSERVICE(*YES)", and the records are to be
processed in arrival sequence. This is only pertinent for
database files containing keys and when it is important
to retain the arrival sequence of the data.

*SPL Files to be zipped are spool files.

TYPLISTFL

TYPLISTFL(*DB|*IFS)

Specifies the “type of files system” that will be used for the input list file and/or the
output list file of selected items.

To use input list files, see parameters INCLFILE (file section list) or EXCLFILE (file
exclude list). To create an output list file of the selected file items, see parameter
CRTLIST.

*DB Files are in the QSYS library file system.

*IFS Files are in the IFS (Integrated File System).

VERBOSE

VERBOSE(*NORMAL|*NONE| *ALL|*MAX)

Specifies how the detail will be displayed during a PKZIP run.

The allowable values are:

*NORMAL Displays most informative message to show PKZIP is
processing.

*NONE Displays only major exception information.

*ALL Displays all messages.

*MAX Used only for debugging purposes.

VPASSWORD

VPASSWORD(Archive Verify Passphrase)

Specifies a verification passphrase against the entered passphrase since the
PASSWORD is not visible. This parameter is required for all encryption methods
except ZIPSTD. VPASSWORD follows all the rules of PASSWORD and must match
exactly to the archive passphrase entered in PASSWORD parameter or the run will be
terminated. If the PASSWORD() parameter contains an inlist file, the VPASSWORD()
parameter is ignored.

 141

8 PKUNZIP Command

PKUNZIP Command Summary with Parameter Keyword Format
To decompress data from the IBM i OS command prompt screen, the command
format is simply: PKUNZIP.

The command prompt screen is displayed when ENTER or PF4 is pressed. The
parameter keywords are displayed on this screen together with the available
keyword options. If the command and parameter keywords are entered together on
the command line, the required format is:

PKUNZIP keyword1(option) keyword2(option) . . . keywordn(option)

Keywords are delimited by spaces. The keyword “ARCHIVE” is the only positional
keyword where the keyword itself is not required. Whenever the word “path” is used,
its meaning depends on the file system that is being used. If IFS is used, path refers
to the openness true path type. If the library systems or *DB is used, path means
library/file, and then the file name refers to the member name.

ARCHIVE(Archive Zip File name with path)

AUTHCHK(Authenticators) (Smartcrypt Only)
 Authenticate Type {*FILE}

 {*ARCHIVE}
 {*ALL}

 Lookup Type {*DB }
 {*LDAP}
 {*FILE}
 {*MBRSET}
 {*INLIST}

 {*SPONSOR} (Read mode Only)
 Recipient {Recipient String}
 Passphrase (if Private) {Certificate passphrase}
 Required {*RQD }

 {*OPT}

AUTHPOL (Authenticate Filters:) (Smartcrypt Only)
Validate Level {*SYSTEM }
 {*WARN }
 {*VALIDATE}
 {*REQUIRED}
Validate Type {*NONE }
 {*ALL }
 {*ARCHIVE}
 {*FILE}
Filters {*SYSTEM }

142

 {*ALL}
 {*NONE}
 {*TAMPER}
 {*TRUSTED}
 {*EXPIRED}
 {*REVOKED}
 {*NOTAMPER}
 {*NOTTRUSTED}
 {*NOTEXPIRED}
 {*NOTREVOKED}

CRTLIST({*NONE})

path/filename

CVTDATA(External Pgm Conversion Extended Data)

CVTFLAG({*NONE})
External Pgm Conversion Flags

CVTTYPE({*NONE})
{*DROP}
{*SUFFIX}

DFTDBRECLN({132})
{decimal number}

DROPPATH({*NONE})
{*ALL}
{*LIB}

ENTPREC(Decryption Recipients) (Smartcrypt Only)
 Lookup Type {*DB }

 {*FILE}
 {*MBRSET}
 {*INLIST}

 Recipient {Recipient String}
 Passphrase (if Private) {Certificate passphrase}
 Required {*RQD }

 {*OPT}
EXCLFILE({*NONE})

path/filename

EXCLUDE(file_specification1,)
file_specification2,
file_specificationn

EXDIR({*CURRENT})
path

FACILITY (Algorithm Facilities) (Smartcrypt V5R3M0 Only)
 Encryption: {*DFT}

 {PKSW }
 {IBMSW }
 {PKSW_IBMSW}
 {IBMSW_PKSW}

 Hashing: {*DFT }
 {PKSW }
 {IBMSW }
 {PKSW_IBMSW}
 {IBMSW_PKSW}

FILES(file_specification1,)
file_specification2,
file_specificationn

 143

FILETYPE({*TEXT})
{*BINARY}
{*EBCDIC}
{*DETECT}

FTRAN({*ISO88591})
{*INTERNAL}
 Member Name

IFSCDEPAGE({*NO})
Code-page

INCLFILE({*NONE})
path/filename

MSGTYPE(Outlist Details:)
 Type {*BOTH}

{*PRINT}
{*SEND}

 License Info {*NORMAL}

{*SHORT}
{*NONE}
{*COPYRIGHT}

NSSRULES (NSS Process Settings:) (Smartcrypt Only)
 NSS Classify Archive {*SYSTEM }
 {*NO }
 {INACTIVE}
 {SECRET_SUITEB_REQPLUS}
 {SECRET_SUITEB_STRICT}
 {TOPSECRET_SUITEB_REQPLUS}
 {TOPSECRET_SUITEB_STRICT}

 NSS Check Archive State
 {*SYSTEM }
 {*NO}
 {*OPT}
 {*WARN }
 {*FAIL}

OVERWRITE({*NO})
{*YES}
{*PROMPT}

PASSWORD(Archive Passphrase)

PKOVRTAPI (Archive Tape Overrides:)
 Tape Device {*TAPF }
 { Tape Device }
 Tape File Label {*TAPF }
 {*NONE }
 { Tape Header Label}
 Tape Sequence Nbr {*TAPF }
 { 1-16777216 }
 {*NEXT}
 End Of Tape Option {*TAPF }
 {*LEAVE}
 {*REWIND}
 {*UNLOAD}

RSTIPSRA (Restore Command for iPSRA Files)

SFQUEUE ({*DFT})
{Library/Outq }SPLUSRID (

144

SPLUSRID {*DFT})
{User ID }

TRAN({*ISO88591})
{*INTERNAL}
 Member Name

TYPARCHFL({*DB})
{*IFS}
{*XDB}
{*TAP} new

TYPE(*VIEW)
(*EXTRACT}
{*NEWER}
{*TEST}

TYPFL2ZP({*DB})
{*IFS}

TYPLISTFL({*DB})
{*IFS}

VERBOSE({*NORMAL})
{*NONE}
{*ALL}
{*MAX}

VIEWOPT({*NORMAL})
{*DETAIL}
{*BRIEF}
{*COMMENT }
{*FNE}
{*FNEALL}

VIEWSORT({*ASIS})
{*DATE}
{*DATER}
{*NAME}
{*NAMER}
{*PERCENT}
{*PERCENTR}
{*SIZE}
{*SIZER}

PKUNZIP Command Keyword Details

ARCHIVE

ARCHIVE(Archive Zip File name with path)

Specifies the path/file name or the library/file name of the archive to be extracted
using PKUNZIP.

This is a required parameter.

The format is dependent upon whether the archive file will be accessed from the
library file system, Integrated File System, or directly from tape.

 145

See parameter TYPARCHFL for file system type information.

Library File System: Format is library/file(member). If
member is omitted, it will use the file
name for the member.

Integrated File System (IFS): Open system path followed by the archive
file name. The path and file name can up
to 256 characters and may contain
embedded spaces.

TAPE (Archive directly from Tape): If reading directly from tape, the
archive file must be a Tape Device file
(a file with *TAPF attributes). The
tape device file will define the archive's
attributes for tape usage.

AUTHCHK

Requires Smartcrypt

Authenticator Certificates:
 File/Archive *FILE *FILE, *ARCHIVE, *ALL
 LookUp Type *DB *DB, *LDAP, *FILE, *MBRSET...
 Authenticator ______________________________
 Passphrase (If Private) . . . ______________________________
 Required *RQD *RQD, *OPT
 + for more values _

Or

AUTHCHK((*FILE *MBRSET
 'pkwareCertAdmin04.pfx' (passphrase) *RQD))
AUTHCHK((*ALL *FILE
 '/yourpath/PKWARE/Cstores/public/pkwareCertAdmin04.cer' () *RQD))
AUTHCHK((*ARCHIVE *FILE
 '/yourpath/PKWARE/Cstores/public/pkwareCertAdmin04.cer' () *RQD))
AUTHCHK((*FILE *DB
 ‘EM=bill.somebody@pkware.com' () *OPT))
AUTHCHK((*FILE *INLIST 'ATEST/INLIST(ENGNEER1)' *N))

This parameter specifies that digital signature authentication processing should be
performed for specific signers. Separate authentication processing may be specified
for either the archive central directory or files by using multiple commands.
Optionally, specific signers may be specified to authenticate against. This parameter
is used in conjunction with the AUTHPOL parameters and its settings.

It is possible that more than one certificate may be returned for a single common
name or email search. As a result, each one will be added to the list of validating
sources.

When no specific certificates are requested, any signatories found in the archive are
validated in accordance with the systems or current AUTHPOL Filters policy settings.

There are five options for AUTHCHK.

146

Authenticator Type File/Archive (*FILE |*ARCHIVE |*ALL)

This designates the type of authentication that is to be performed. Either ARCHIVE,
FILE or ALL may be specified on each item, but by using ALL or archive with the
*RQD option will result in error since the archive can only have one signatory. If the
lookup type is *INLIST, then this option will be ignored and will pick up from the
records in the inlist file.

• *FILE – The signed files will be authenticated with this authenticator.

• *ARCHIVE - The archive directory will be authenticated with this
authenticator.

• *ALL – Both the signed files and the archive directory will be
authenticated with this authenticator.

Lookup Type (*DB |*FILE |*LDAP |*MBRSET |*INLIST |*SPONSOR)

The lookup type would be the type of authenticator search to be used for the
authenticator string to look up the public key.

• *DB - The authenticator string is defined to search using the certificate
locator database to access the digital certificate.

• *FILE - The authenticator string is defined to read a specific file in a
specific path in the IFS in order to access the digital certificate.

• *LDAP - The recipient string is defined to search using the LDAP server to
access the digital certificate.

• *MBRSET - The authenticator string is defined to read this specific file
from the enterprise public certificate store to access the digital certificate.

• *INLIST- The authenticator string defines a specific file that will contain
one to many AUTHCHK. The TYPLISTFL parameter must specify the file
type for the inlist.

• *SPONSOR - The authenticator string is the authenticating file for a
sponsoring partner. This applies only for SecureZIP Partner Read mode
and for *ARCHIVE.

Authenticator (The authenticator string name)

The authenticator string format depends on what was specified for the lookup type.

• If lookup type is *DB, the authenticator string will either be an email
address or the common name of the certificate. This depends on the
configuration setting in PKCFGSEC parameter CERTDB. To override the
default selection mode, you can prefix the string with EM= for email, or
CN= for the common name.

For example:

AUTHCHK((*FILE *DB ‘bill.somebody@pkware.com' () *RQD)
 (*ARCHIVE *DB ‘CN=bill somebody' () *RQD)
 (FILE *DB ‘EM=bill.somebody@pkware.com' (passphrase) *OPT))

• If lookup type is *FILE, the authenticator string is defined to read a
specific file in a specific path of the IFS. This file should be a public key
X.509 file or public key X.509 certificate with a private key file.

 147

For example:

AUTHCHK((*ARCHIVE *FILE
 '/yourpath/PKWARE/Cstores/public/pkwareCertAdmin04.cer' () *RQD))

The digital certificate file ‘pkwareCertAdmin04.cer’ will be in the full path
'/yourpath/PKWARE/Cstores/public’.

• If type is *LDAP, the authenticator string will either be an email address
or the common name of the certificate depending on the search mode
configuration setting in PKCFGSEC parameter LDAP. To override the
default selection mode, you can prefix the string with EM= for email
address, or CN= for the common name.

For example:

AUTHCHK ((*ARCHIVE *LDAP ‘bill.somebody@pkware.com' () *RQD)
 (*FILE *LDAP ‘CN=bill somebody' () *OPT)
 (*FILE *LDAP ‘EM=bill.somebody@pkware.com' () *RQD))

• If lookup type is *MBRSET, the authenticator string is defined to read a
specific file from the public certificate store and/or the private certificate
store of the IFS. This file should be a public key X.509 file or public key
X.509 certificate with a private key file.

For example:

AUTHCHK((*ALL *MBRSET 'pkwareCertAdmin04.cer' () *RQD))

The digital certificate file ‘pkwareCertAdmin04.cer’ will be in the full path of
the public certificate store defined in the enterprise security configuration
public store (parameter CSPUB). If a passphrase is included, the file is
searched for in the enterprise security configuration private store (parameter
CSPRIV).

• If lookup type is *INLIST, the authenticator string defines a full file name
of an input list file that contains records of AUTHCHK shortcut parameters.
The type of file will exist in the QSYS library file system if TYPLISTFL(*DB)
is set and will be a path file name in the IFS if TYPLISTFL(*IFS) is set. The
format of the AUTHCHK shortcut parameters are defined below in the
*INLIST usage section.

• If lookup type is *SPONSOR, the authenticator string is the Sponsor Auth
file stored in the ‘…/Sponsor/Auth’ folder. If the authenticator string is all
numeric the name will automatically be formatted as A0000000.p7,
assuming that the number is the sponsor ID number.

Passphrase

This designates the passphrase that is required for a private key certificate with a
private key (PKCS#12 file). When a value is specified, the target must be an X.509
PKCS#12 public key certificate with the private key.

The PASSWORD value may contain blanks and is delimited by the closing right
parenthesis ")" of the signing command.

148

Required (*RQD|*OPT|*SAME)

If *RQD, then this authenticator must be found during the selection, and the
certificate must be a valid certificate with a private key, or the ZIP/UNZIP run will
fail.

Usage Notes:

Passphrases are masked out in all output displays.

A local certificate store configuration is required to complete the TRUST processing of
this command.

Processing is terminated if none of the requested certificates can be accessed,
regardless of the “R” required flag. If multiple requests are made and at least one
signature is found, processing continues normally.

For inlist that contains a passphrase to open a private certificate, make sure that the
security is sufficient to only allow the owner of the certificate to have read access.
Otherwise this would leave a security hole where other users could browse the
passphrase.

*INLIST Usage:

If *INLIST is defined on the AUTHCHK parameter, then the authenticator filed will be
a file that Smartcrypt will read to include the authenticator. The format is very
similar to the AUTHCHK parameter described above except that each line
authenticator starts with “{AUTHCHK=” and is terminated by the “}” character, with
the semi-colon “;” as a separator for each entry.

{AUTHCHK=Authenticator Type, Lookup Type; Authenticator; Passphrase; Required}

Authenticator Type See Authenticator Type in AUTHCHK

Lookup Type See Lookup Type in AUTHCHK excluding the INLIST

Authenticator See Authenticator in AUTHCHK.

Passphrase See Passphrase in AUTHCHK.

Required See Required in AUTHCHK, but use RDQ for *RQD and OPT for
*OPT.

Examples:

Sample 1: tstauth_db1.inlist.
{AUTHCHK=FILE;DB;EM=PKTESTDB4@nowhere.com;;RQD}

Sample 2: tstauth_mb2.inlist.
{AUTHCHK=ARCHIVE;MBRSET;pktestdb3.pfx;PKWARE;RQD}

Sample 3: tstauth_mb3.inlist.
{AUTHCHK=ALL;MBRSET;pktestdb3.pfx;PKWARE;RQD}

 149

AUTHPOL

Requires Smartcrypt

Authenticate Filters:
 Validate Level *SYSTEM *VALIDATE, *WARN, *NONE...
 Validate Type *ARCHIVE *ARCHIVE, *NONE
 Filters *SYSTEM *SYSTEM, *ALL, *NONE...
 + for more values

Or

AUTHPOL(*WARN *ARCHIVE (*SYSTEM))
AUTHPOL(*WARN *FILE (*NOTTRUSTED))
AUTHPOL(*SYSTEM *ALL (*ALL *NOTEXPIRED))

This parameter defines the processing options and filters that should apply if a
signed file or signed archive is encountered.

Validate Level (*VALIDATE |*WARN |*REQUIRED |*SYSTEM)

The validate level specifies the type of authentication processing that should take
place if a file or archive is encountered. The default is *SYSTEM and, unless it is
modified, Smartcrypt will use the enterprise setting from PKCFSEC.

• *VALIDATE – Indicates that, when authentication takes place and a
failure occurs based on the filters, the run will be considered a failure, and
the message issued when the job terminates will indicate one or more
errors during the run.

• *WARN - Indicates that when authentication is in place and a failure
occurs, the failure is only considered a warning. The messages at the end
of the run will not consider any failed authentications as errors.

• *REQUIRED – Indicates that authentication must take place and that, if
any failure occurs based on the filters, the run will be considered a failure,
and the message issued when the job terminates will indicate one or more
errors occurred during the run. If the archive or file has not been signed,
an error will be issued.

• *SYSTEM – Indicates the authentication processing that is set in the
environmental setting will be used.

Validate Type (*ALL |*ARCHIVE |*FILE |*NONE)

The validate type specifies whether the file, archive, all or no authentication will take
place if a file or archive has been signed. The default is *NONE, and anything other
than *NONE requires the Enhanced Encryption module.

• *ALL - Indicates that authentication will take place for both files and/or
the archive has been signed.

• *ARCHIVE - Indicates that only a signed archive will be authenticated.

• *FILE - Indicates that only the signed files will authenticated.

150

• *NONE - Indicates no authentication will take place even though a file or
archive has been signed.

Filters (*SYSTEM |*ALL |*NONE |*TAMPER |*TRUSTED |*EXPIRED |*REVOKED
|*NOTAMPER |*NOTTRUSTED |*NOTEXPIRED |*NOTREVOKED)

The authentication filter policies settings are defined in the enterprise security file
supplied by the Smartcrypt administrator (See PKCFGSEC). These global policy
settings can be revised with sub-parameter values. The variables are cumulative
from the global setting.

• *SYSTEM – All filter policies are from the global settings.

• *ALL - This sub-parameter activates all levels of authentication. If
followed by negating sub-levels, then all but those negating levels are
activated. For example: *ALL NOTEXPIRED means that expired
certificates will not cause an authentication error, but TRUST and
TAMPERCHECK must both be satisfied.

• *NONE – Will negate all the policies.

• *TAMPER – This sub-parameter signifies that a verification of the data
stream should be done against the digital signature.

• *TRUSTED – This sub-parameter signifies that the entire certificate
authority chain must be validated. This includes locating the root (self-
signed) certificate on the local system.

• *EXPIRED – This sub-parameter signifies that certificate date range
validation should be performed on the certificates (including the certificate
authority chain). Although the term “expired” is used, a certificate that
has not yet reached its valid data range specification will fail.

• *REVOKED - A certificate owner may request that the issuing certificate
authority declare a certificate to be revoked and thereby no longer
consider that certificate to be valid. The authentication operation will fail if
any of the certificates in the trust chain are found to have been revoked,
or if the revocation status could not be determined

• *NOTAMPER – Negates the *TAMPER filter.

• *NOTTRUSTED – Negates the *TRUSTED filter.

• *NOTEXPIRED - Negates the *EXPIRED filter.

• *NOTREVOKED – Negates the *REVOKED filter.

CRTLIST

CRTLIST(*NONE| path/filename)

Specifies that PKUNZIP will create an output file with a list of entries that will be
compressed based upon the selection criteria in the FILES and EXCLUDE parameters.
This parameter only works with the TYPE set to *VIEW.

Use FILES and EXCLUDE to generate a listfile; use INCLFILE in a separate command
to load the listfile.

 151

See parameter TYPLISTFL for file system type information.

*NONE No list file will be created.

path/filename Enter the file path and name of the file to create. The
layout depends on which file system you want to create
the file in.

Library File System:
The format is "library/file(member)".

Integrated File System (IFS):
The format is "path1/path2/../pathn/filename".

CVTDATA

CVTDATA(External Program Conversion Extended Data)

Specifies the extended data that is passed to the external program CVTNAME. When
CVTFLAG is not *NONE, the contents of the parameter are passed to provide
extended flexibility in controlling how the IBM i names are stored in the archive. The
System Administrator’s Guide contains more information on CVTNAME.

External Program Conversion Extended Data
Specify up to 255 bytes of unedited data which is passed
to the exit program CVTNAME to assist in controlling the
program logic.

CVTFLAG

CVTFLAG(*NONE|Conversion Flags)

Specifies the flags passed to the external program CVTNAME. These are used to
control how the IBM i names are stored in the archive. The System Administrator’s
Guide contains more information on CVTNAME.

The allowable values are:

*NONE Conversion exit is not active.

Conversion Flags Specify a 5-byte flag that is passed to the exit program
CVTNAME to control the program logic. If the name
passed back is blank, then conversion is referred back to
the setting of the CVTTYPE parameter.

CVTTYPE

CVTTYPE(*NONE|*DROP|*SUFFIX)

Specifies how the files names in the archive will be converted to a file name in the
IBM i library, file, and Member format. In the IBM i QSYS library system, the length
of each name in the QSYS format can only be up to 10 characters. In other
platforms, the file name formats (including MS/DOS) may have an extension with a
period (.) separator which is not valid in the IBM i DB name. The file names in some

152

cases may even exceed the 10-character limit. This parameter gives control over the
file name conversion process.

Note: The conversion of file names may result in duplicate file names on the IBM i
system. In this case, the rules for overwriting the files are in effect for duplicates
(see the OVERWRITE option). If this is the case, using specific file inclusion and
exclusion with multiple runs may be required to extract all of the files.

The allowable values are:

*SUFFIX This forces the removal of the period(.) extension and
stores name truncating characters over 10 characters.

*NONE This leaves the IBM i name as the archive name.

*DROP Drops all characters after the period(.) extension
separator, and stores the name truncating characters
over 10.

DFTDBRECLN

DFTDBRECLN (132|Record Length)

Specifies the record length to use when creating a file in the QSYS library system. If
TYPFL2ZP parameter is *DB, and the file being extracted does not exist nor does
extended attribute for the record length exist, the file will be created with the record
length specified in this parameter.

The allowable values are:

132 Default is record length of 132 to match previous
versions.

Record Length A decimal number from 50 to 32000.

DROPPATH

DROPPATH(*NONE|*ALL| *LIB)

Used to drop the path(s) or libraries of files that are stored in the archives, therefore
only using the file names in the archive. This is used along with the keyword EXDIR
where the default paths are defined when dropping the paths on files in the archive.

For example, if the file in the archive is “path1/path2/filename” (IFS) or
“library/file/member” (QSYS), and if DROPPATH is *ALL, the file being extracted
would be “filename” or “member”. If *LIB was used, the file being extracted would
be path1/filename” or “file/member”.

The allowable values are:

*NONE Do not remove paths and/or libraries in the archive.

*ALL Remove all paths that are stored in the archive, leaving
only an IFS file name or member name.

*LIB Remove only the first path (which in most cases could
be the library).

 153

ENTPREC

Requires Smartcrypt

Encryption Recipients :
 LookUp Type *DB *DB, *FILE...
 Recipient ______________________________________

 Passphrase . . ______________________________________
 Required *RQD *RQD, *OPT
 + for more values _

Or

ENTPREC((*MBRSET 'pkwareCertAdmin04.p12' (pw) *RQD))
ENTPREC((*FILE
 '/yourpath/PKWARE/Cstores/private/pkwareCertAdmin04.p12' (pw) *RQD))
ENTPREC((*FILE
 '/yourpath/PKWARE/Cstores/private/pkwareCertAdmin04.pfx' (‘mypassphrase’)
*RQD))
ENTPREC((*DB
 ‘EM=bill.Somebody@pkware.com' (pw) *RQD))
ENTPREC((*LDAP
 ‘EM=bill.Somebody@pkware.com' (pw) *RQD))
ENTPREC((*INLIST 'ATEST/INLIST(ENGNEER1)' *N))

The decryption recipient parameter defines one to many recipients which is to be
included for UNZIP process. This parameter allows 1-4 types of certificate searches
to take place along with providing the ability for an include file that may contain the
recipients.

The specification of this recipient ENTPREC parameter triggers decryption to take
place during UNZIP processing utilizing the found recipients along with passphrases
that were entered to access the private certificates.

There are four options.

Lookup Type (*NONE |*DB |*FILE |*MBRSET |*SAME)

The Lookup type is the type of recipient search to be used for the recipient string.

• *DB - The Recipient string is defined to search using the Certificate
Locator Database to access the digital certificate.

• *FILE - The recipient string is defined to read a specific file in a specific
path in the IFS in order to access the digital certificate.

• *MBRSET - The recipient string is defined to read this specific file from
the enterprise public certificate store to access the digital certificate.

• *INLIST- The recipient string defines a specific file that will contain one
to many recipients.

Recipient (The recipient string name)

The recipient string format depends on what was specified for the Lookup type.

154

• If type is *DB - The recipient string will either be an email address or the
common name of the certificate. This depends on the configuration setting
in PKCFGSEC parameter CERTDB. To override the default selection mode,
you can prefix the string with EM= for email or CN= for the common
name.

For example:

ENTPREC((*DB ‘bill.Somebody@pkware.com' (pw) *RQD)
 (*DB ‘CN=bill Somebody' (pw) *RQD)
 (*DB ‘EM=bill.Somebody@pkware.com' (pw) *RQD))

• If type is *FILE - The recipient string is defined to read a specific file in a
specific path of the IFS. This file should be Public-key X.509 file or private-
key X.509 certificate file.

For example:

ENTPREC((*FILE '/yourpath/PKWARE/Cstores/private/pkwareCertAdmin04.p12'
(pw) *RQD))

The digital certificate file ‘pkwareCertAdmin04.cer’ will be in the full path
'/yourpath/PKWARE/Cstores/private.

• If type is *MBRSET - The recipient string is defined to read a specific file
from private certificate store of the IFS. This file should be a private-key
X.509 certificate file.

For example:

ENTPREC((*MBRSET 'pkwareCertAdmin04.p12' (pw) *RQD))

The digital certificate file ‘pkwareCertAdmin04.p12’ will be in the full path of
the private certificate store defined in the enterprise security configuration
private store(parameter CSPRIV).

• If type is *INLIST- The recipient string defines a full file name of an input
list file that contains records of ENTPREC shortcut parameters. The type of
file will in the QSYS library file system if TYPLISTFL(*DB) is set and will be
a path file name in the IFS if TYPLISTFL(*IFS) is set. The format of the
ENTPREC shortcut parameters are define below in the *INLIST Usage
section.

Passphrase

The passphrase is required to access private certificates.

Required (*RQD|*OPT|*SAME)

If *RQD, then this recipient MUST be found during the selection and the certificate
MUST be valid or the ZIP/UNZIP run will fail.

Usage Notes:

The UNZIP process requires a X.509 private-key format certificate file to decrypt files
and thus requires an inputted passphrase.

 155

For an inlist that contains a passphrase to open a private-key certificate, make sure
that the security is sufficient to allow read access only to the owner of the certificate.
Otherwise other users can browse the passphrase.

*INLIST Usage:

If *INLIST is defined on the ENTPREC parameter, then the recipient filed will be a file
that Smartcrypt will read to include recipient. The format is very similar to the
ENTPREC parameter describe above except each line recipient starts with
“{RECIPIENT=” and is terminated by the “}” character with the semi-colon “;” as a
separator for each entry.

{RECIPIENT=Lookup Type; Recipient; Passphrase; Required}

Lookup Type See Lookup Type in ENTREC excluding the INLIST

Recipient See Recipient in ENTREC.

Passphrase See Passphrase in ENTREC.

Required See Required in ENTREC, but use RDQ for *RQD and
OPT for *OPT.

Sample 1: tstpriv_db4.inlist.
{RECIPIENT=DB;EM=PKTESTDB4@nowhere.com;PKWARE;RQD}

Sample 2: tstpriv_mb3.inlist.
{RECIPIENT=MBRSET;pktestdb3.pfx;PKWARE;RQD}

Sample 3: tstpubl.inlist.

{RECIPIENT=MBRSET;pktestdb3.p12;pw;RQD}
{RECIPIENT=MBRSET;pktestdb4.p12;pw;OPT}

Sample 4: tstpubl2.inlist.

{RECIPIENT=DB;EM=PKTESTDB3@nowhere.com;pw;RQD}
{RECIPIENT=DB;CN=PKWARE Test4;pw;OPT}

EXCLFILE

EXCLFILE(*NONE| path/filename)

This parameter specifies the file containing the list of files to be excluded. This can
be used with or without the EXCLUDE parameter. See parameter TYPLISTFL for file
system type information.

*NONE No list file will be processed.

156

path/filename Enter the file path and the name of the file to process.
The layout depends on which file system you want the
file created.

Library File System:
The format is "library/file(member)".

Integrated File System (IFS):
The format is "path1/path2/../pathn/filename".

EXCLUDE

EXCLUDE(file_specification1, file_specification2,... file_specification n)

Specifies the files and file specification patterns that will be excluded from the
PKUNZIP run. One or more names can be specified. Each name should be in the IBM
i OS file system format, such as, QSYS is library/file(member) and IFS is
directory/file, and can include wildcards “*” and “?”.

Note: If TYPE(*VIEW) is being used, then the format for these names is the
MS/DOS format.

The PKUNZIP program can also exclude file specifications by using the list file
parameter EXCLFILE with a list of names to exclude.

Please refer to “File Selection and Name Processing” in Chapter 1 for details of file
specification formatting.

The valid parameter values for the FILES keyword are as follows:

'file_specification 1'

'file_specification 2'...

'file_specification n'

EXDIR

EXDIR(*CURRENT| path)

If there are no paths stored in the archive file name, EXDIR specifies the default path
to store the files being extracted. The path definition depends on the “file system
type” in parameter TYPFL2ZP. This will happen when the files come from a PC or if
the files were compressed with Smartcrypti using the STOREPATH(*NO) parameter.

If the “file system type” is IFS, EXDIR will be the paths defined for your IBM i open
systems and the default path will be the current directory settings (issue the
command DSPCURDIR to see the current directory settings).

If the “file system type” is the library file system, the path will be either a library or a
library/filename. The default is *CURLIB/UNZIPPED and if the file UNZIPPED does not
exist, then it is created with a record length of 132. It is best to create a default file
with the record length of your choice, because if a text file is extracted with a record
length greater than the file’s record length, the record will be truncated to fit the
record length.

 157

If EXDIR is coded with keyword MBR and the file system is the QSYS library system,
PKUNZIP will use the member name for the file name. For example:
EXDIR('newlib/MBR') and DROPPATH(*ALL) parameters are coded and the file name
in archive is "mylib/myfile/mymbr", the file will be extract to the file
"newlib/mymbr(mymbr)". This is only valid for TYPFL2ZP(*DB) files.

EXDIR is also used when the archive file is a GZIP archive and there is no file name
stored in the archive. In this case, EXDIR becomes a required field.

*CURRENT Current directory for IFS or *CURLIB/UNZIPPED for the
QSYS library file system.

path Enter the path or path/path/.. in which to extract. The
layout depends on the file system in which the file is to
be created.

Library File System:
The format is "library/file".

Integrated File System (IFS):
The format is "path1/path2/../pathn".

FACILITY (Algorithm Facilities)

Requires Smartcrypt for IBM i V5R3M0 or above

Algorithm Facilities:
 Encryption: *DFT *DFT, PKSW, IBMSW...
 Hashing: *DFT *DFT, PKSW, IBMSW...

Or

FACILITY((IBMSW_PKSW) (*DFT))

FACILITY defines the Encryption and Hashing Algorithm API’s that are available and
their sequences. At this time there are only two facilities of APIs 1). PKWARE and
2). IBM Software Security.

Currently there are 2 entries for the FACILITY parameter: Encryption, and Hashing.

Encryption: (*DFT | PKSW | IBMSW | PKSW_IBMSW | IBMSW_PKSW)

Sets the encryption facility API to use in the run.

*DFT Use the encryption facility specified in the environment
setting defined in the PKCFGSEC parameter FACENC

PKSW Use PKWARE API for encryption

IBMSW Use IBM Software API for encryption

PKSW_IBMSW Both PKWARE API and IBM Software API are available
for encryption, but use PKWARE API if available

158

IBMSW_PKSW Both IBM Software API and PKWARE API are available
for encryption, but use IBM Software API if available

Hashing: (*DFT | PKSW | IBMSW | PKSW_IBMSW | IBMSW_PKSW)

Sets the hashing facility API to use in the run.

*DFT Use the hashing facility specified in the environment
setting defined in the PKCFGSEC parameter FACHASH.

PKSW Use PKWARE API for Hashing.

IBMSW Use IBM Software API for Hashing.

PKSW_IBMSW Both PKWARE API and IBM Software API are available
for Hashing, but use PKWARE API if available.

IBMSW_PKSW Both IBM Software API and PKWARE API are available
for Hashing, but use IBM Software API if available.

FILES

FILES(file_specification1, file_specification2,... file_specification n)

Specifies the files and file specification patterns that will be selected in the PKUNZIP
process. One or more names can be specified. Each name should be in the IBM i OS
file system format, such as, QSYS is library/file(member), and IFS is directory/file,
and can include wildcard “*” and “?”.

Note: If TYPE(*VIEW) is being used then the format for these names is the
MS/DOS format.

The PKUNZIP program can also have file specification selections to include by using
the list file parameter INCLFILE with a list of names to select.

Files may also be excluded. See the EXCLUDE parameter.

Please refer to “File Selection and Name Processing” in Chapter 1 for details of file
specification formatting.

The valid parameter values for the FILES keyword are as follows:

'file_specification 1'

'file_specification 2'

'file_specification n'

FILETYPE

FILETYPE(*TEXT|*BINARY|*EBCDIC|*DETECT)

Specifies whether the files selected are treated as text or binary data. For text files
added to an archive, trailing spaces in each line are removed, the text is converted
to ASCII (based on the translation tables) by default, and a carriage return and line
feed (CR/LF) are added to each line before the data is compressed into the archive.
Binary files are not converted at all.

 159

There are attributes which indicate how a file was compressed (TEXT, BINARY, or a
SAVF) in the archive headers. The default setting (and recommended) is *DETECT,
which analyzes the header to determine the file type. To view the attribute settings
of a file, use the VIEWOPT(*DETECT).

If the file is a SAVF, then it will be processed as BINARY, regardless of any option
that you select.

*DETECT Uses the attribute setting that is stored in the archive to
determine the file type.

*TEXT Specifies that the files selected are text files and
translation will be performed using the translate tables
specified in the TRAN option.

*BINARY Specifies that the files selected are binary files and no
translation should be performed.

*EBCDIC Specifies that the files selected are text files and leaves
it in EBCDIC without performing any translation. This is
good only if the files are to be used on an IBM i or IBM-
type mainframe. If they are unzipped to a PC file, then
a translation from EBCDIC to ASCII is required.

FTRAN

FTRAN(*ISO88591 |*INTERNAL| Member Name)

Specifies the translation table for use in translating "file names, comments, and
passphrase" from the IBM i EBCDIC character set to the character set used in the
archive file (normally ASCII character set). A default internal table is predefined. See
Appendix D for additional information.

*ISO88591 The predefined internal table for translation. This table
provides translation that is consistent with the ISO
8859-1 definitions. This table uses the EBCDIC code
page 037 and the ASCII code page 819 for translation.

*INTERNAL To provide some compatibility to pre V8 version,
*INTERNAL will use the predefined internal tables that
were the default in V5 PKZIP.

membername Specify the member name in the file PKZTABLES that
will be parsed and used to translate "file names and
comments" files to the archive character set. The
member should have the exact format of member
ISO9959_1 in file PKZTABLES. See Appendix D for
information on defining translation tables.

IFSCDEPAGE

IFSCDEPAGE(*NO | Code-Page)

If this option is set to *NO, PKUNZIP will write IFS files with the code page that is
registered for the file, or will use the default job code page if no code page is set in

160

the file attributes. Otherwise, PKUNZIP will write IFS files with the specified code
page.

Note: If files are to be extracted to a case sensitive file system, the case sensitive
format of file names must be used before they can be selected.

The allowable values are:

*NO The PKUNZIP program will read IFS files with the code
page registered for the file. This is the default.

Code-Page The PKUNZIP program will write the IFS files with the
specified code page value.

INCLFILE

INCLFILE(*NONE| path/filename)

This parameter specifies the file containing the list of files to be selected for
including. This can be used with or without the FILES parameter. See parameter
TYPLISTFL for file system type information.

*NONE No include list file will be processed. This is the default.

path/filename Enter the file path and name of the file to process. The
layout depends on which file system you want the file
created.

Library File System:
The format is "library/file(member)".

Integrated File System (IFS):
The format is "path1/path2/../pathn/filename".

MSGTYPE
Outlist Details:
 Type *BOTH *BOTH, *SEND, *PRINT
 License Info. *NORMAL *NORMAL, *SHORT, *NONE

Or

MSGTYPE(*SEND)
MSGTYPE(*BOTH *SHORT)
MSGTYPE(*BOTH *NONE)
MSGTYPE(*PRINT)

This parameter specifies where displayed output will be outputted and the type of
licensing splash screen to provide.

Detail Type (*BOTH |*PRINT |*SEND)

Specifies where the display of messages and information should be shown. The
PKZIP program can send messages that appear on the log and/or can print to stdout
and stderr. If you are working interactively, stdout and stderr will show up on the
dynamic screen. If working via batch, you can override stdout and stderr to print in
an OUTQ or build a CL and save to an outfile.

 161

*BOTH Send the information to the log with send message
commands and also to stdout and stderr.

*PRINT Send the information to stdout and stderr.

*SEND Send the information to the log with send message
commands.

License Info (*NORMAL |*SHORT |* NONE |*COPYRIGHT)

Specify what type of Smartcrypti license and copyright information to display.

*NORMAL Displays all license and copyright information.

*SHORT Displays base licensing/copyrights.

*NONE Displays only registration information.

*COPYRIGHT Displays Copyright and trademark details from
$COPYRIT file in the product distribution library.

NSSRULES

Requires Smartcrypt

NSS Process Settings:
 NSS Classify Archive *SYSTEM *VALIDATE, *WARN, *NONE...
 + for more values
 NSS Check Archive State . . . *SYSTEM *NO, *WARN, *FAIL, *SYSTEM

Or

NSSRULES(INACTIVE)
NSSRULES (SECRET_SUITEB_REQPLUS *WARN)
NSSRULES (TOPSECRET_SUITEB_STRICT *SYSTEM)

The NSS rules parameter controls the enterprise settings for adhering to their NSS
process. There are currently two option settings for NSSRULES.

NSS Classify Archive (*SYSTEM | *NO | INACTIVE | SECRET_SUITEB_REQPLUS |
SECRET_SUITEB_STRICT | TOPSECRET_SUITEB_REQPLUS |
TOPSECRET_SUITEB_STRICT)

The NSSCLASSIFY setting governs enablement of SECRET and TOP SECRET
classification associated with Suite B cryptographic algorithms as specified by the
National Institute of Standards and Technology (NIST) for protecting National
Security Systems (NSS). Suite B includes cryptographic algorithms for encryption,
digital signature, and hashing.

The default is *SYSTEM and, unless it is modified, Smartcrypt will use the enterprise
setting from PKCFSEC .

The NSS Classify archive defines how the NSS Check archive state will adhere to.

• *SYSTEM - All filter policies are from the global settings.

162

• *NO / INACTIVE - No classification criteria enforcement
is done.

• SECRET_SUITEB_ REQPLUS / SS_REQP - A restriction
to algorithms and key strength specifications associated
with Classification level SECRET or better are to be
enforced.

• SECRET_SUITEB_STRICT / SS_STRICT - A restriction
to algorithms and key strength specifications associated
with Classification level SECRET are to be enforced
exactly.

• TOPSECRET_SUITEB_REQPLUS / TS_REQP - A
restriction to algorithms and key strength specifications
associated with Classification level TOP SECRET or better
are to be enforced.

• TOPSECRET_SUITEB_STRICT / TS_STRICT - A
restriction to algorithms and key strength specifications
associated with Classification level TOP SECRET are to be
enforced exactly.

NSS Check Archive State (*NO | *WARN | *FAIL |*SYSTEM)

The NSSCHECK setting is used during VIEW, TEST or EXTRACT actions in concert
with a NSSCLASSIFY specification level to be checked.

The default is *SYSTEM and, unless it is modified, Smartcrypt will use the enterprise
setting from PKCFSEC.

• *SYSTEM - Indicates the authentication processing that
is set in the environmental setting will be used.

• *NO - No check will take place.

• *WARN - Processing continues. Extraction is permitted
to complete. A warning message AQZ0061 “Smartcrypt
UNZIP ending with Warnings for <Suite B Issues>” will
be returned instead of messages AQZ0037 or AQZ0038.

• *FAIL - Extraction processing will be terminated. The
file in error will not be extracted. For all actions, the
message AQZ0038 “Smartcrypt UNZIP Completed with
Errors” will be returned when a mismatch occurs.

OVERWRITE

OVERWRITE(*NO|*YES|*PROMPT}

Controls how PKUNZIP reacts to files that are being extracted and the file already
exists. To help prevent accidental overwriting of files, the default is *PROMPT.

The allowable values are:

*YES Always overwrite files. If the file exists, the file will be
overwritten with no message or prompting.

 163

*NO Never overwrite files. If the file already exists then the
archive file will be skipped and not extracted. This is the
default.

*PROMPT When a file being extracted already exists, PKUNZIP will
issue the warning message AQZ0262 and prompt the
user for the required action.

PASSWORD

PASSWORD(Archive Passphrase)

Specifies a decryption passphrase to be used for files that were encrypted to the
archive with a passphrase. This passphrase may be up to 260 characters in length
and is case-sensitive. All files selected for archiving will be checked for encryption
using the specified passphrase. Files in the archive may have different passphrases.
If so, PKUNZIP must be run once for each passphrase.

Since the passphrase in entered in EBCDIC, the translation table referenced in the
FTRAN parameter is used to translate it to ASCII. Care should be taken when using
the FTRAN override and when using a passphrase. To use passphrase-protected files,
the same FTRAN override option is required.

If the contents of the PASSWORD() parameter starts with the key word *INLIST;,
then the passphrase will be retrieved from the Inlist file defined in the PASSWORD()
parameter.

*INLIST Usage

To utilize the inlist file for a passphrase, the PASSWORD parameter must start with
the keyword *INLIST;. If the inlist file is not from the same file system that is set
with the TYPLISTFL(*IFS/*DB) parameter, then code a *DB; or *IFS; to describe the
file system where the following inlist will reside. Following the *INLIST; or
*IFS;/*DB;, the file name should be specified. Using the inlist method for
passphrase allows the opportunities to secure a file of a passphrase with the IBM i
object authorities. For more information on INLIST see Appendix C.

Examples of PASSWORD() passphrase inlist file coding:

• PASSWORD('*INLIST;ATEST/PPINLIST(MBR01)')

where TYPLISTFL(*DB) and the file is PPINLIST in library ATEST for file
member MBR01

• PASSWORD('*INLIST;*DB;ATEST/PPINLIST(MBR01)')

demonstrates overriding the TYPELISTFL

• PASSWORD('*INLIST;/myroot/PKINLIST/PP01.inl')

where TYPLISTFL(*IFS) and the path to the inlist file is ‘/myroot/PKINLIST/’
with stream file name of ‘PP01.inl’

• PASSWORD('*inlist;*IFS;/myroot/PKINLIST/PP01.inl'))

demonstrates overriding the TYPELISTFL

The passphrase inlist file must contain “PASSPHRASE={” and be terminated by the
“}” character. The passphrase used will be all of the bytes that exist between the {}

164

not including the { or the }. Null bytes and end-of-record bytes are ignored.
Therefore the passphrase structure should be only on one record of an inlist file.

Example of contents of an inlist file:
PASSPHRASE={x12345678901234x}

The passphrase used will be x12345678901234x in EBCDIC. This will then be
translated to ASCII using the FTRAN parameter.

Care should be taken that the file is EBCDIC and has a correct code page. It will use
all bytes of data between the {}, even non-displayable bytes.

After a passphrase inlist file is set up, it should be tested with both PKZIP and the
PKUNZIP command.

HEXKEY:<display-hex value>

This coding form (HEXKEY: in mixed case) provides for the specification of a
symmetric cipher ZIP archive file protection.

HEXKEY: is used to provide a binary key for qualifying algorithms to protect files in a
ZIP archive.

The key is provided in a display-hex format, where 2 hexadecimal character values
comprise 1 byte (8 bits) of key information. The number of hex characters specified
must match the encryption method key strength for the cipher that was used to
encrypt the files.

Encryption Method Required Hex Characters

3DES 42 characters (168 bits)

RC4 32 characters (128 bits)

AES128 32 characters

AES192 48 characters

AES256 64 characters

Example: For AES128; PASSWORD('HEXKEY:12345678123456781234567812345678')

PKOVRTAPI new parameter

New Archive Tape Overrides:
 Tape Device *TAPF Tape Device
 Tape File Label *TAPF Tape Header, *NONE
 Tape Sequence Nbr *TAPF 1-16777216, *TAPF, *NEXT
 End Of Tape Option *TAPF *TAPF, *REWIND, *UNLOAD...

Or

PKOVRTAPI(*TAPF 'ARCHIVE_TEST01' 1 *TAPF)
PKOVRTAPI(*TAPF 'ARCHIVE_TEST02' *NEXT *LEAVE)
PKOVRTAPI(*TAPF *NONE 2 *LEAVE)
PKOVRTAPI(TAP02 'ARCHIVE_TEST03' *NEXT *REWIND)

 165

This parameter defines the override options for the tape device file specified in the
archive parameter. These options are active only if TYPARCHFL(*TAP) is set to read
the archive directly from a tape. When *TAP is specified, the values from the current
tape device file is used. For more information on these options and overrides, refer
to the CHGTAPF command.

Currently there are 4 entries for the PKOVRTAPI parameter:

 (Tape Device, Tape File Label, Tape Sequence Nbr, End Of Tape Option)

Tape Device (Tape Device |*TAPF)

Overrides the DEV() parameter of the tape device file. Specifies the name of a tape
device used with this device file to perform input data operations.

Tape File Label (label string |*TAPF | *NONE)

Overrides the LABEL() parameter of the tape device file. Specifies the data file
identifier that is processed by this tape device file. The data file identifier is defined
for standard-labeled tapes and is stored in the header label immediately before the
data file that the header describes. For more details on the specification for this 17-
byte option, refer to the CRTTAPF and CHGTAPF commands for tape label processing.

• *TAPF - Use current TAPF settings from device file.

• *NONE – No tape file label checking will take place. The file that will be
read will depend on the tape sequence number.

• label string – Up to a 17 byte string for tape header label.

Tape Sequence Number (*NEXT |sequence nbr |*TAPF)

Overrides the SEQNBR() parameter of the tape device file.

This specifies the file sequence number of the data file on the tape being read. For
standard-labeled tapes, this four-position file sequence number is read from the first
header label of the data file.

• *NEXT - The file after the current setting of the tape is read.

• Sequence number - Specifies the file sequence number of the file being
read on this tape.

End of Tape Option (*TAPF |*REWIND |*UNLOAD |*LEAVE)

Overrides the ENDOPT() parameter of the tape device file. This option specifies the
operation that is automatically performed on the tape volume after the operation
ends. If more than one volume is included, this parameter applies only to the last
tape volume used; all other tape volumes are rewound and unloaded when the end
of the tape is reached.

• *REWIND - The tape is rewound, but not unloaded.

• *UNLOAD – The tape is automatically rewound and unloaded after the
operation ends.

• *LEAVE – The tape does not rewind or unload after the operation ends. It
remains at the current position in the tape drive.

166

RSTIPSRA

RSTIPSRA (For iPSRA files enter a restore command)

If an iPSRA file is to be restored, RSTIPSRA should contain the appropriate restore
command for the objects. To view the save command that was used to create the
iPSRA file, do a TYPE(*VIEW) VIEWOPT(*ALL). This parameter should contain the
restore command with no surrounding quotes. When the cursor is position to a
restore command entered in the RSTIPSRA parameter, it can be prompted. If the
restore command cannot pass the command pre-processor, an error will show for the
restore command. Valid restore commands are: RST, RSTLIB, RSTOBJ, and RSTDLO.

SFQUEUE

SFQUEUE (*DFT |Name)

Specifies the output queue that will be used as an override when extracting spool
files. If no OUTQ library is specified, it will default to *LIBL.

The allowable values are:

*DFT The output queue that are in the spool file attributes will
be used when extracting files.

OUTQ The specific OUTQ that will used when the spool file is
extracted. It must be a valid output queue.

OUTQ Library The library where the OUTQ resides.

SPLUSRID

SPLUSRID (*DFT| User ID)

The user ID to use when extracting a spool file. If *DFT is used the user ID belonging
to the spool file will be used when building the spool file.

The allowable values are:

*DFT Use user ID associated with spool file in the archive.

User ID Specify a valid user ID that the new extracted spool file
will belong to. It must be a valid user ID on the IBM i
OS.

Note on extracting Spool Files: To create or extract a spool file with PKUNZIP,
the user must have *USE authority to the API QSPCRTSP. The normal setting for the
API QSPCRTSP is authority PUBLIC(*EXCLUDE). The API authority is set this way so
that system administrators can control the use of this API. This API has security
implications because you can create a spooled file from the data of another spooled
file. To allow user to extract spool files change the API authority on a need basis.

 167

TRAN

TRAN(*ISO88591 |*INTERNAL| Member Name)

Specifies the translation table for use with translating “data” from the IBM i EBCDIC
character set to the character set used in the archive file (normally the ASCII
character set). A default internal table is predefined (see Appendix D).

*ISO88591 The predefined internal table for translation. This table
provides translation that is consistent with the ISO
8859-1 definitions. This table uses the EBCDIC code
page 037 and the ASCII code page 819 for translation.

*INTERNAL To provide some compatibility to pre V8 version,
*INTERNAL will use the predefined internal tables that
were the default in V5 PKZIP.

Member Name Specifies the member name in the file PKZTABLES that
will be parsed and used to translate data files to the
archive character set. The member should have the
exact format of member ISO9959_1 in file PKZTABLES
(see Appendix D for information on defining translation
tables).

TYPARCHFL

TYPARCHFL(*DB |*IFS |*XDB | *TAP)

Specifies the type of file system in which the archive file will exist (see parameters
ARCHIVE and TMPPATH for additional information).

*DB Archive files are to be in the QSYS library file system.
Even though *DB is working with archive files that are in
the QSYS library file system, the IFS is utilized for
performance and for large file support (ZIP64). To
provide an option for archive file reading utilizing
exclusively the QSYS library system, use
TYPARCHFL(*XDB), which will support OS400 features
such as Adopt Authority.

*IFS Archive files are to be in the Integrated File System
(IFS).

*XDB The archive file will be read exclusively utilizing the
QSYS library file system during processing. This option
will not provide large file support or ZIP64 features.

*TAP Archive file will be read directly from tape. The ARCHIVE
parameter MUST be a tape device file that has an
attribute of *TAPF. The input tape device file PKTAPEI1
is distributed with PKZIP/Smartcrypt.

168

TYPE

TYPE(*EXTRACT|*NEWER|*TEST |*VIEW)

The TYPE keyword specifies the type of action PKUNZIP should perform on the ZIP
archive.

The possible actions are:

*VIEW Display output information about all files or selected files
contained in an archive. This option is performed using
PKUNZIP. The sequence (see *VIEWSORT) and type of
list (*VIEWOPT) determines what information is
displayed.

*EXTRACT Extracts files from the archive (please refer to the
DROPPATH, CVTTYPE, TO, and EXDIR parameters for
controlling the conversion of file names extracted from
the archive).

*NEWER Extracts files in the archive that have a more recent
date and time than the corresponding file on disk. If the
files do not exist on disk, they will be extracted as
newer. All other files will be skipped.

*TEST Tests the integrity of files in the archive by extracting
files without writing the data. As each file is extracted,
a CRC is calculated. At the end of the file the calculated
CRC is compared against the stored CRC in the archive
file header to confirm that the data has not been
corrupted.

TYPFL2ZP

TYPFL2ZP(*DB|*IFS)

Specifies the type of file system that contains the files to be unzipped. Reflected for
files in parameters FILES and EXCLUDE.

*DB Files to be unzipped are in the QSYS library file system.

*IFS Files to be unzipped are in the IFS (Integrated File
System).

TYPLISTFL

TYPLISTFL(*DB|*IFS)

Specifies the “type of files system” that will be used for the input list file and/or the
output list file of selected items.

To use input list files, see parameters INCLFILE (file section list) or EXCLFILE (file
exclude list). To create an output list file of the selected files items, see parameter
CRTLIST.

 169

*DB Files are in the QSYS library file system.

*IFS Files are in the IFS(integrated file system).

VERBOSE

VERBOSE(*NORMAL|*NONE| *ALL|*MAX)

Specifies how the detail will be displayed during a PKUNZIP run.

The allowable values are:

*NORMAL Displays most informative messages to show PKUNZIP is
processing.

*NONE Displays only major exception information.

*ALL Displays all messages.

*MAX Used only for debugging purposes.

VIEWOPT

VIEWOPT(*NORMAL|*DETAIL|*BRIEF|*COMMENT|*FNE|*FNEALL)

Specifies the level of information produced when viewing the archive.

The allowable values are:

*NORMAL Shows the original file length, compression method,
compressed size, compression ratio, file date and time,
32-bit CRC value, and file name for each file in the
archive.

*DETAIL Shows very detailed technical information about each
file in the archive. It will also show all extended
attribute (extra data fields) information that was stored
in the archive produced by PKZIP (only if the PKZIP
keywords EXTRAFLD(*YES) or DBSERVICE(*YES) were
specified).

*BRIEF Shows the original file length, file date and time, and file
name for each file in the archive.

*COMMENT Same as the *NORMAL option, but also shows any file
comments stored on a separate line after its details.

*FNE Shows the archive’s file name encryption properties.

*FNEALL Shows the archive’s file name encryption detail
properties including the allowable recipients.

VIEWSORT

VIEWSORT(*ASIS|*DATE|*DATER|*NAME|*NAMER|*PERCENT|*PERCENTR| *SIZE|*SIZER))

Specifies the sequence of the viewing display.

170

The allowable values are:

*ASIS List the files in the sequence in which they are stored in
the archive, such as, as is.

*DATE List the files in ascending order of the file’s date & time
as stored in the archive.

*DATER List the files in descending order of the file’s date & time
as stored in the archive.

*NAME List the files in ascending order of the file name as
stored in the archive.

*NAMER List the files in descending order of the file name as
stored in the archive.

*PERCENT List the files in ascending order of the compression
percentage as stored in the archive.

*PERCENTR List the files in descending order of the compression
percentage as stored in the archive.

*SIZE List the files in ascending order of the uncompressed file
size as stored in the archive.

*SIZER List the files in descending order of the uncompressed
file size as stored in the archive.

 171

9 PKPGPZ “PKWARE OpenPGP ZIP”
Command

Some organizations use encryption tools based on the OpenPGP standard, rather
than X.509. OpenPGP uses the same basic Public Key Infrastructure principles for
exchanging encrypted files, but uses a decentralized “Web of Trust” method of
authenticating signatures.

Smartcrypt extracts and decrypts files that comply with the OpenPGP standard, RFC
4880. Smartcrypt can also create OpenPGP-compliant files and sign files with
OpenPGP certificates. In this chapter, you’ll learn how to use Smartcrypt with
OpenPGP.

PKPGPZ Requires Smartcrypt

PKPGPZ Command Summary with Parameter Keyword Format
The PKPGPZ command provides the ability to create an OpenPGP archive file format
according to the RFC 4880 standard.

To create an OpenPGP file on the IBM i OS command prompt screen, the command
format is simply: PKPGPZ. Press Enter or PF4 to display the command prompt
screen. The parameter keywords are displayed on this screen, together with the
available keyword options. If the command and parameter keywords are entered
together on the command line the required format is:

PKPGPZ keyword1(option) keyword2(option) . . . keywordn(option)

Keywords are separated by spaces. You do not need to include the “ARCHIVE”
keyword; it is the only positional keyword not required. Whenever the word “path” is
used in the following text, its meaning depends on the file system that is being used.
If IFS is used, path refers to the open system true path type. If the library systems
or *DB is used, path means library/file and then the file name refers to the member
name.

Restrictions:

 PKWARE OpenPGP PKPGPZ 16.1(PKPGPZ)
Type choices, press Enter.
OpenPGP Archive File:
 Archive Name

172

Archive File Type:
 Type *DB *DB, *IFS
File to select

Files to select Type *DB *DB, *IFS
File Data Types *DETECT *DETECT *TEXT *BINARY
Store Path Names *REL *REL, *NOROOT, *NO, *YES
Compression:
 Level *SUPERFAST *SUPERFAST, *FAST, *NORMAL...
 Method *DEFLATE32 *DEFLATE32, *STORE
Strong Encryption:
 Method AES256 *NONE, AES128, AES192...
Archive Passphrase

Verify Passphrase

Outlist Details:
 Type *BOTH *BOTH, *SEND, *PRINT
 License Info. *SHORT *NORMAL, *SHORT, *NONE...
Create a List Out file *NONE

File types of List Files *DB *DB, *IFS
Display detail levels *NORMAL *NORMAL, *NONE, *ALL, *MAX
Encryption Recipients :
 LookUp Type *PGPDEF *PGPDEF
 Handle Handle
 Recipient

 Required *RQD *RQD, *OPT
 + for more values
Signing OpenPGP Keys :
 LookUp Type *PGPDEF *PGPDEF
 Handle Handle
 Signer

 Passphrase
 Required *RQD *RQD, *OPT
Encryption Filters:
 Validate Level *SYSTEM *VALIDATE, *WARN, *SYSTEM
 Filters *SYSTEM *SYSTEM, *EXPIRED...

Signing Filters:
 Validate Level *SYSTEM *VALIDATE, *WARN, *SYSTEM
 Filters *SYSTEM *SYSTEM, *EXPIRED...

OpenPGP Key Ring Definitions:
 Key Ring Handle *NONE Handle
 PUB/PVT Type *PUB *PUB, *PVT
 Key Ring Engine *FILE *FILE
 Engine Name

 + for more values
OpenPGP Rules:
 File Format *BINARY *BINARY, *AARMOR, *EARMOR
 Encryption Key Select . . . *SYSTEM *NONE, *LATESTVALID...
 Signing Key Select *SYSTEM *NONE, *LATESTVALID...
 RFC2440 Level *SYSTEM *NONE, *LEVEL1

 173

Algorithm Facilities:
 Encryption: *DFT *DFT, PKSW, IBMSW...
 Hashing: *DFT *DFT, PKSW, IBMSW...
File EBCDIC Translation mbr . . *ISO88591 Mbr Name
Data EBCDIC Translation mbr . . *ISO88591 Mbr Name
Text Line Delimiters CRLF CRLF, LFCR, CR, LF, *NONE
External Conversion Flags . . . *NONE Character value, *NONE

 Additional Parameters

IFS Code Page *NO Valid Code Page
Default DB Archive Rec. length 1024 50-32000
Insert Path *NONE

CVTNAME Extra Pass Data

Store Directories as entry . . . *YES *YES, *NO
Armor File Comment *NONE

PKPGPZ Command Keyword Details

Advanced Encryption to use (ADVCRYPT)
When a passphrase or an OpenPGP key is specified for encryption, an encryption
algorithm must be specified.

The possible encryption algorithms are:

AES256 Advanced Encryption Standard 256-bit key algorithm

AES128 Advanced Encryption Standard 128-bit key algorithm

AES192 Advanced Encryption Standard 192-bit key algorithm

3DES Triple Data Encryption Standard.

CAST5 CAST5 encryption algorithm. (OpenPGP only)

Archive File(ARCHIVE)
This parameter specifies the name of the archive to be created.

Archive to create (archive file name with path)

Specifies the path/file name or the library/file name of the archive to be processed.
If the file exists, PKPGPZ will overwrite the file, otherwise PKPGPZ will create the file
for you. Depending on which file system you choose, the path or library must exist.
This is a required parameter.

Note: The format of "archive file name with path" depends on whether you will be
using the archive file in the library file system, or the IFS (Integrated File System) as
explained in the previous section.

See parameter TYPARCHFL for file system type information.

• Library File System: Library File System Format is Library/File(Member). If
Member is omitted, it will be created with the file name. If the file is not
found it will be created with a default record length of 1024. (or whatever
is specified in parameter DFTARCHREC). If you would create a file
manually to use a larger record length, create it with no members and

174

with parameter MAXMBRS with *NOMAX or with a high excepted limit. If
the Library is not specified, the file name will be searched using the *LIBL.
If the file name is not found, the file will be created in the users *CURLIB.

If a Library is specified and does not exist, the PKPGPZ program will create the
Library.

• IFS (Integrated File System): Open system path followed by the archive
file name.

ARCHTEXT

ARCHTEXT(*NONE| Armor File Comment)

Specifies text that will be stored in the OpenPGP Radix-64 ARMOR file as the
archive's Comment record(s).

*NONE No new archive comment will be stored.

Armor File Comment
Up to 255 characters that are stored as the archive's
armor file comments.

Compression (COMPRESS)
This parameter specifies the speed and compression level to be used when creating
an OpenPGP archive.

There are two entries for the COMPRESS parameter: Level and Method.

Compression Level (*SUPERFAST |*FAST |*NORMAL |*MAX |*STORE |E0 thru E9)

The Compression Level option specifies a compression level and speed to be used.
The option works in conjunction with the Compression Method option and specifies a
depth of compression using a sliding scale of values. The allowable values are:

*SUPERFAST This is the default compression and will compress in the
fastest time, but will probably compress the files by the
least amount. Same as E1.

*NORMAL The normal compression level provides good
compression amount at a reasonable speed. Same as
E3.

*FAST This is fast compression which also provides good
compression amounts. Same as E2.

*MAX This level provides the maximum compression, but will
also take the longest in time to process. Same as E6.

*STORE No compression. Store will also be used if the other
methods tried results in a file larger than the original.
Same as E0.

E0-E9 E0 thru E9 are custom levels that can be used to try and
obtain the results based on your input file and desired
time and compression results.

 175

Note: Compression levels E1 through E9 work with Deflate32.

"Maximum" is retained at level 4 to provide equivalent compression ratios with
earlier releases. Higher levels may yield better compression ratios than previously
obtained with "Maximum".

Compression results are data-stream dependent and produce non-linear results.
When configuring a job for high volume processing, benchmarking results with a
sample file may be of value to find the best balance between compression ratio and
resources (elapsed and processor time). In many cases, levels 8 and 9 do not
produce significant compression results over level 7.

When compression level is STORE, or E0, the compression method will be set
automatically to store.

Compression Method (*DEFLATE32 |*STORE)

This option specifies the algorithm to be used when compressing a file during ZIP
processing. The method works in conjunction with the Compression Level option to
specify a depth of compression.

STORE performs no compression of the data. Deflate64 (using the same level
control) will usually produce better compression with less processor time than
Deflate32.

The allowable values are:

*DEFLATE32 Use the Deflate 32 algorithm. *STORE Store
Data with no compression.

External Conversion Pass Data (CVTDATA)
Specifies the extended data passed to the external program CVTNAME. When
CVTFLAG is not *NONE, the contents of the parameter is passed to provide extended
flexibility in controlling how the IBM i names are stored in the archive. See Appendix
C, “External Name Conversion Program” in the System Administrator’s Guide for
more details on CVTNAME.

External Pgm Conversion Extended Data
Specify up to 255 bytes of unedited
data that is passed to the exit
program CVTNAME to assist in
controlling the program logic.

External Conversion Flags (CVTFLAG)
Specifies the flags passed to the external program CVTNAME. These are used to
control how the IBM i names are stored in the archive. See Appendix C, “External
Name Conversion Program” in the System Administrator’s Guide for more details on
CVTNAME.

The possible values are:

*NONE Conversion exit is not active.

176

*400 Use the included sample CVTNAME program section that
does not change the names.

Conversion Flags Specify a 5-byte flag that is passed to the exit program
CVTNAME to control the program logic. If the name
passed back is blank, then conversion is referred back to
the setting of the CVTTYPE parameter.

Record Delimiter (DELIM)
When compressing a text file (not binary), the DELIM parameter specifies what
characters are to be appended at the end of records to serve as delimiters. The
delimiter is removed from the record when it is decompressed. The allowable values
are:

CRLF This is the default selection. Specifies PKPGPZ to use the
default delimiter CR-LF (x'0D0A') at the end of each text
record.

CR Appends an ASCII Carriage Return (hex 0D).

*LF Appends an ASCII Line Feed character (hex 0A).

LFCR Appends an ASCII Line Feed character (hex 0A0D).

Note: MS-DOS records use CRLF for a delimiter, while UNIX records use LF.

Default Archive File Record Length(DFTARCHREC)
Specifies the record length to use when creating an archive file in the QSYS Library
system. If the TYPARCHFL parameter is *DB and the archive file does not exist, the
archive file will be created with the record length specified in this parameter. Care
should be taken on large record lengths, as it will leave a high residual number if
only one byte is use in the last record.

The allowable values are:

1024 Default is record length of 1024 to match previous
versions.

Record-Length A decimal number from 50 to 32000.

Encryption Recipients (ENTPREC)
The Encryption/Decryption Recipient parameter defines one to many recipients to
include in the ZIP and UNZIP process. The specification of this Recipient ENTPREC
parameter triggers encryption to take place during ZIP processing utilizing the found
recipients along with any passphrase that may be entered.

There are five entries for the ENTPREC parameter: Lookup Type, Handle, Recipient,
Passphrase, and Required

 177

Lookup Type (*PGPDEF)

The Lookup type would be the type of recipient search that will be used for the
Recipient string.

*PGPDEF OpenPGP key access is defined in a Key definition (See
PGPDEF).

Handle (The Keyring Handle string name)

The Keyring Handle matches up with proper supplied Key Ring (See PGPDEF).

• KeyRing Handle string name up to 8 bytes.

Recipient (The recipient string name)

The Recipient string format depends on what was specified for the Lookup type.

• If type is *PGPDEF - The Recipient string will either be an Email address,
Common Name or Key ID of the OpenPGP key.

Required (*RQD|*OPT)

If *RQD, then this recipient MUST be found during the selection and the certificate
MUST be valid or the ZIP/UNZIP run will fail.

• *RQD The Recipient is required to be found and valid.

• *OPT The Recipient is optional. If the Recipient cannot be found or is
invalid the process will continue.

For example, if encrypting a file for John Doe, we can use either a common
name, email address or the Key ID associated with his OpenPGP key:

ENTPREC((*PGPDEF handle 'CN=John Doe' () *RQD))
ENTPREC((*PGPDEF handle 'EM=john.doe@pkware.com' () *RQD))
ENTPREC((*PGPDEF handle 'KEYID=1234567890123456' () *RQD))

NOTE: A matching handle name must be specified in the PGPDEF field.

Algorithm Facilities (FACILITY)
FACILITY defines the Encryption and Hashing Algorithm APIs that are available and
their sequences. At this time there are only two facilities of APIs

• PKWARE

• IBM Software Security.

There are two entries for the FACILITY parameter: Encryption, and Hashing.

Encryption: (*DFT |PKSW |IBMSW | PKSW_IBMSW | IBMSW_PKSW)

Defines which Encryption Facility APIs will be used during the run.

*DFT Defines that the encryption facility used is from the
environment setting defined in the PKCFGSEC parameter
FACENC.

178

PKSW Use PKWARE API for encryption.

IBMSW Use IBM Software API for encryption.

PKSW_IBMSW Both PKWARE API and IBM Software API are available
for encryption, but use PKWARE API if available.

IBMSW_PKSW Both IBM Software API and PKWARE API are available
for encryption, but use IBM Software API if available.

Hashing: (*DFT |PKSW |IBMSW | PKSW_IBMSW | IBMSW_PKSW)

Defines which Hashing Facility APIs will be used during the run.

*DFT Defines that the hashing facility used is from the
environment setting defined in the PKCFGSEC parameter
FACHASH.

PKSW Use PKWARE API for hashing.

IBMSW Use IBM Software API for hashing.

PKSW_IBMSW Both PKWARE API and IBM Software API are available
for hashing, but use PKWARE API if available.

IBMSW_PKSW Both IBM Software API and PKWARE API are available
for hashing, but use IBM Software API if available.

File to compress (FILES)
Specifies the file that will be selected in the ZIP process. One name may be specified
and should be in the IBM i file system format (i.e., QSYS is library/file(member) and
IFS is directory/file). For the IFS, the path and file name can be up to 256 characters
and can contain embedded spaces.

File Types (FILETYPE)
Specifies whether the selected file is treated as text or binary data. When a text file
is compressed, trailing spaces in each line are removed, the text is converted to
ASCII (based on the translation tables) by default, and a carriage return and line
feed (CR/LF) are added to each line before the data is compressed into the archive.
Binary files are not converted.

The default is *DETECT, where the PKPGPZ program will try to make a determination
based on the existing data type. The program will read in a portion of the data,
evaluate it, and determine the appropriate process. Please note that this lowers
performance time. A message will display the type used when compressing.

Use of text file options is usually faster because the PKPGPZ program has to process
less data than with *BINARY. However, more processing may also take place to
perform the translation.

If the file is a Save File or a Database File (with DBSERVICE(*YES)), then the file will
be processed as BINARY, no matter what option is specified.

 179

*DETECT The PKPGPZ program will try to determine the data type
of the selected file (Text or Binary).

*TEXT Specifies that the selected file is a text file and
translation will be performed using the translate tables
specified in the TRAN option.

*BINARY Specifies that the selected file is a binary file and no
translation should be performed.

*EBCDIC Specifies that the selected file is a text file and leaves it
in EBCDIC without performing any translation. This is
good only if the file is to be used on an IBM i or IBM-
type mainframe. If it is unzipped to a PC file, then a
translation from EBCDIC to ASCII would be required.

*FIXTEXT Specifies that the selected file is a text file with a fixed
record length based on the IBM i file's record length and
translation will be performed using the translate tables
specified in the TRAN option. This means the
compressed file will contain records with trailing spaces
followed by a CR and LF. This is only valid for QSYS
Library file types as files in the IFS do not contain a
record length.

File EBCDIC Translation Mbr (FTRAN)
Specifies the translation table for use in translating file names, comments, and
passphrases from the IBM i EBCDIC character set to the character set used in the
archive file (normally ASCII character set). A default internal table is predefined. See
Appendix D for additional information.

*ISO88591 The predefined internal table for translation. This table
provides translation that is consistent with the ISO
8859-1 definitions. This table uses the EBCDIC code
page 037 and the ASCII code page 819 for translation.

*INTERNAL To provide some compatibility to pre V8 version,
*INTERNAL will use the internal tables that were the
default in V5 PKZIP

membername Specify the member name in the file PKZTABLES that
will be parsed and used to translate "File names and
comments" files to the archive character set. The
member should have the exact format of member
ISO9959_1 in file PKZTABLES. See Appendix D for
defining translation tables.

File IFS Code Page (IFSCDEPAGE)
If this option is set to *NO, the PKPGPZ program will read IFS files using the code
page that is registered for the file. Otherwise, the PKPGPZ program will read IFS files
with the specified code page.

The possible values are:

180

*NO The PKPGPZ program will read IFS files with the code
page registered for the file. This is the default.

Code-Value The PKPGPZ program will read IFS files with the
specified code page value.

Insert Path (ISRTPATH)
This parameter specifies a path that will be inserted in front of the file name that will
be stored in the archive. This may helpful when transporting the file to another
system where a self-extractor will be used. If the last position of this path is not a
path separator (/), one will be added prior to inserting the path.

*NONE No path will be inserted. This is the default.

path1/path2/../pathn Enter the path to insert in front of the file name
that will be stored in the archive.

Outlist Details (MSGTYPE)
This parameter specifies where displayed output will be outputted and the type of
licensing splash screen to provide.

There are two entries for the MSGTYPE parameter: (Detail Type, and License Info.)

Detail Type (*BOTH |*PRINT | *SEND)

Specifies where the display of messages and information should be shown. The
PKPGPZ program has the ability to send messages that appear on the log and/or the
ability to print to stdout and stderr. If working interactively, stdout and stderr will
appear on the dynamic screen. If submitted via batch, you can override them to
print in an OUTQ or build a CL and save them to an outfile.

*BOTH Send the information to the log with send message
commands and also to stdout and stderr.

*PRINT Send the information to stdout and stderr.

*SEND Send the information to the log with send message
commands.

License Info. (*NORMAL |*SHORT |*NONE |*COPYRIGHT)

Specify what type of PKZIP license and copyright information to display.

*NORMAL Displays all license and copyright information.

*SHORT Displays base licensing/copyrights.

*NONE Displays only registration information.

*COPYRIGHT Displays Copyright and trademark details from
$COPYRIT file.

 181

Archive Passphrase (PASSWORD)
Specifies an encryption passphrase for the file being compressed. This passphrase
may be up to 260 characters in length and is case sensitive. The file selected for
archiving will be encrypted using the specified passphrase. If a contingency key is
coded for the enterprise, then the key will activate the combo-key of passphrase and
certificate processing. The length range of the passphrase for Smartcrypt is defined
for the enterprise settings by PKCFGSEC.

Note: There is no way to extract the passphrase used from the archive data. If the
passphrase is forgotten, the file will become inaccessible.

Since the passphrase is entered in EBCDIC, the translation table referenced in the
FTRAN parameter is used to translate it to ASCII. Care should be taken when using
the FTRAN override and when using a passphrase. To use passphrase-protected files,
the same FTRAN override option is required.

OpenPGP Keyring Definition (PGPDEF)
Specifies the 'handle' name and other settings to be used with the matching
ENTPREC, and SIGNERS options.

Keyring Handle Enter the desired 'handle' name

PUB/PVT Type Specifies the desired key type

Keyring Engine Specifies the access method to the OpenPGP keys.

Engine Name Specifies the name for the appropriate access method.

 For example:

 If *FILE is specified for the Keyring Engine, the Engine
Name would be the name of the file that contains the
OpenPGP keys.

OpenPGP Rules (PGPRULES)

Requires Smartcrypt

PGPRULES are the base rules settings for PKPGPZ processing and consist of three
options.

Example: PGPRULES(*BINARY LATESTVALID LATESTVALID *SYSTEM)

File Format (*BINARY|*AARMOR|*EARMOR)

The file format rule defines the output file's format where the default is in binary.
There may be times where the file is required to be encoded into Radix-64, also
known as ASCII Armor. This parameter will allow the resultant file to be in ASCII or
EBCDIC.

*BINARY Produce a standard OpenPGP binary File.

182

*AARMOR Encode the standard OpenPGP binary file into an ASCII
Radix-64 format. Use this parameter if the format is to
be used in other OpenPGP products.

*EARMOR Encode the standard OpenPGP binary file into an EBCDIC
Radix-64 format. Use this format only if your output file
will only be used in EBCDIC environments. Note: We
recommend that you use a record length (DFTARCHREC)
of 76-80 bytes when creating EBCDIC Armor-formatted
OpenPGP files.

Encryption Key Select (*NONE|*LATESTVALID|*LASTVALID|*FIRSTVALID|*FIRST
|*LAST|*LATEST|*SYSTEM)

Use Encryption Key Select to restrict which OpenPGP keys are used to represent a
user or organization for each encrypted file. The setting applies to the ENTPREC
parameter specifying key selection from an OpenPGP keyring with either an email
(EM=) or common name (CN=) selection clause. (Generic requests for an entire
OpenPGP keyring or KEYID= are not affected by these settings).

When using OpenPGP public keys for recipients, it is possible to locate more than one
key for a target recipient based on email or common name. By default, all matching
keys that pass the ENCRYPOL policy setting will be chosen for use. However, it may
be desirable to limit the encryption to a specific key based on a key's declared time
range or location within the OpenPGP keyring.

Notes

• When a key has no expiration date, an implied timestamp of Mon Jan 18
22:14:07 2038 is used for comparison purposes.

• If multiple keys having the same timestamp are encountered during a
time-based comparison For *FIRSTVALID, *LASTVALID or *LATESTVALID,
the first valid key encountered will be used.

Options:

*NONE No matching will be performed. Every encipherment key
located in the designated OpenPGP keyring matching the
search criteria will be counted as a viable recipient.

*LATESTVALID The most recent encipherment having the latest
expiration date (timestamp) with a valid date range
including the current date/time in the designated
OpenPGP keyring matching the search criteria will be
counted as a viable recipient.

*LASTVALID The last encipherment key having a valid date range in
the designated OpenPGP keyring matching the search
criteria will be counted as a viable recipient.

*FIRSTVALID The first encipherment key having a valid date range in
the designated OpenPGP keyring matching the search
criteria will be counted as a viable recipient.

*FIRST The first encipherment key located in the designated
OpenPGP keyring matching the search criteria will be
counted as a viable recipient.

 183

*LAST The last encipherment key located in the designated
OpenPGP keyring matching the search criteria will be
counted as a viable recipient.

*LATEST The encipherment key having the latest expiration date
(timestamp) in the designated OpenPGP keyring
matching the search criteria will be counted as a viable
recipient.

*SYSTEM Use the enterprise setting from PKCFGSEC parameter
PGPRULE for “Encryption Key Select”.

Usage Notes:

Once a qualified key is selected, it must pass the associated ENCRYPOL policy
settings to be used for encryption.

When 'date range' is referred to, the specificity is actually a time stamp within a
given day.

The "VALID" settings are helpful when the ENCRYPOL=EXPIRED policy is enforced
and there are expired (or not yet valid) keys that might be selected. When this form
of the command value is used, keys outside of the valid date range will be bypassed
in the selection process.

The key found must be of a supported level or type to be used. In the event that the
selection criteria and key select settings identify an unsupported or undesired key,
the KEYID= search criteria should be used in the ENTPREC parameter to specify the
precise key to be used.

Signing Key Select (*NONE|*LATESTVALID|*LASTVALID|*FIRSTVALID|*FIRST
|*LAST|*LATEST|*SYSTEM)

Use Signing Key Select to restrict which OpenPGP key is used to represent a user or
organization when generating a digital signature for an OpenPGP file. The setting
applies to a SIGNERS parameter specifying key selection from an OpenPGP keyring
with either an email (EM=) or common name (CN=) selection clause. (Generic
requests for an entire OpenPGP keyring or KEYID= are not affected by these
settings).

When using OpenPGP private-keys for signing, it is possible to locate more than one
key for use as a signatory based on email or common name. By default, the first
private key in the secret keyring will be chosen for use. Note that the selection
process is performed without regard to private key accessibility. In other words, the
password value for the SIGNERS parameter is used to access the private key after
the key is selected. Smartcrypt for IBM i does not assess whether a key is accessible
as part of the key selection process.

Note:

• When a key has no expiration date, an implied timestamp of Mon Jan 18
22:14:07 2038 is used for comparison purposes.

• If multiple keys having the same timestamp are encountered during a
time-based comparison For *FIRSTVALID, *LASTVALID or *LATESTVALID,
the first valid key encountered will be used.

Options

184

*NONE No matching will be performed. Every signing key
located in the designated OpenPGP keyring matching the
search criteria will be counted as a viable recipient.

*FIRST The first signing key located in the designated OpenPGP
keyring matching the search criteria will be counted as a
viable recipient.

*LAST The last signing key located in the designated OpenPGP
keyring matching the search criteria will be counted as a
viable recipient.

*LATEST The signing key having the latest expiration date
(timestamp) in the designated OpenPGP keyring
matching the search criteria will be counted as a viable
recipient.

*FIRSTVALID The first signing key having a valid date range in the
designated OpenPGP keyring matching the search
criteria will be counted as a viable recipient.

*LASTVALID The last signing key having a valid date range in the
designated OpenPGP keyring matching the search
criteria will be counted as a viable recipient.

*LATESTVALID The most recent signing having the latest expiration
date (timestamp) with a valid date range including the
current date/time in the designated OpenPGP keyring
matching the search criteria will be counted as a viable
recipient.

*SYSTEM Use the enterprise setting from PKCFGSEC parameter
PGPRULE for “Signing Key Select”.

RFC2440 Level(*SYSTEM|*NONE|*LEVEL1)

When creating OpenPGP files for distribution to receiving sites that do not adhere to
RFC 4880, errors may occur because the older software versions cannot interpret the
files correctly. This setting allows for a range of backward compatibility to the RFC
2440 standards.

*SYSTEM Use the enterprise setting from PKCFGSEC parameter
PGPRULE for "RFC2440 Level".

*NONE OpenPGP files created will adhere to RFC 4880
standards.

*LEVEL1 If the receiving sites only support RFC 2440, *LEVEL1
will build encryption packets to RFC2440. If such sites
are identified, use this setting for ZIP processing so that
RFC 2440 encipherment packets (tag 9) are created
instead of packet tag 18.

Usage Notes:

A valid password for the SIGNERS parameter value must be provided to access the
private key for the purpose of generating a digital signature.

 185

Once a qualified key is selected, it must pass the associated policy settings
(AUTHPOL for UNZIP operations and SIGNPOL for ZIP) to be used for signing or
authentication.

When 'date range' is referred to, the specificity is actually a time stamp within a
given day.

The "VALID" settings are helpful when the SIGNPOL = EXPIRED policy for ZIP
operations is enforced and there are expired (or not yet valid) keys that might be
selected. When this form of the parameter value is used, keys outside of the valid
date range will be bypassed in the selection process.

The key found must be of a supported level or type to be used. In the event that the
selection criteria and key select settings identify an unsupported or undesired key,
the KEYID= search criteria should be used in the SIGNERS parameter to specify the
precise key to be used.

Signing Keys (SIGNERS)
This parameter identifies the private key that is to be used to digitally sign the
archive directory. Signing the archive enables people who receive the archive to
confirm that the archive as a whole is not changed.

There are six options for SIGNERS

Signing Type File/Archive (*ARCHIVE)

Only one signer may be specified for an archive.

*ARCHIVE The Archive will be signed by this private key and a
signature entry will be added to the archive.

Lookup Type (*PGPDEF)

The lookup type would be the type of signer search that will be used for the signer
string to lookup the private key.

*PGPDEF OpenPGP key access is defined in a Key definition (See
PGPDEF).

Handle (The Key Ring Handle string name)

The Key Ring Handle matches up with proper supplied Key Ring (See PGPDEF).

KeyRing Handle string name up to 8 bytes.

Signer (The signer string name)

The signer string format depends on what was specified for the Lookup type.

• If type is *PGPDEF - The Recipient string will either be an Email address,
Common name or Key ID of the OpenPGP key.

For example:

SIGNERS((*ARCHIVE *PGPDEF handle 'CN=john.doe@pkware.com' (passphrase)

186

*RQD))

NOTE: A matching handle name must be specified in the PGPDEF field.

Passphrase (Private Cert Passphrase)

This designates the passphrase that is required for a private-key. When a value is
specified, the target must be a valid OpenPGP private-key. The Passphrase value
may contain blanks and is delimited by the closing right parenthesis ")" of the
signing command.

Required (*RQD|*OPT)

If *RQD, then this signer MUST be found during the selection and the private key
MUST be valid or the run will fail.

*RQD The signer is required to be found and valid.

*OPT The Signer is optional. If it cannot be found or is invalid

 the process will continue.

NOTE: It is important that the passphrase is entered in the correct case. Any

variation in case or misspelling will result in a public-key certificate access attempt
(which will fail for a private-key).

Passphrases will be masked out in all output displays.

Processing will be terminated if the requested private key cannot be accessed,
regardless of the "R" required flag. If multiple requests are made and at least one
signature is found, processing will continue normally.

Signing Settings: (SIGNPOL)
This parameter defines the processing options and filters that should take place if the
SIGNERS parameter is used to define the archive signing private keys.

Validate Level (*VALIDATE |*WARN |*SYSTEM)

The validation level defines what happens if the selection of a private key for signing
fails the filters.

*SYSTEM Indicates the authentication processing that is set in the
environmental setting will be used.

*VALIDATE Indicates that when authentication takes place and a
failure occurs based on the filters, the run will be
considered a failure, and the message issued at the end
will indicate one or more errors during the run.

*WARN Indicates that when authentication takes place and a
failure occurs, the failure is only considered a warning.
The messages at the end of the run will not consider any
failed filters for signers as errors.

 187

Filters (*EXPIRED |*NOTEXPIRED)

*EXPIRED The private keys used for the signing operation contains
internal date ranges of validity. Note that a private key
may have expired at the time that the archive is being
accessed, and NOTEXPIRED may be used to continue
processing.

*NOTEXPIRED *EXPIRED is not validated for signing keys.

Store Path (STOREPATH)
Specifies whether to store the full path and file name in the archive, or to just save
the file name. If the file is an IFS file type, the path is All Directories, levels that are
defined in the FILES(..) parameter. In the library system, the path is the library and
the file (or member) name.

The allowable values are:

*REL Only the RELative path and file name will be stored (that
is, No leading '/'). If an IFS absolute path was used in
the file selection, the leading '/' would be removed from
the file name in the archive. For example if the file is
'/pkzshare/mypath1/mypath2/myfile', then it will be
stored as 'pkzshare/mypath1/mypath2/myfile'.

*NOROOT The first node of the path will not be stored. If file type
is *DB then the library will not be stored. If the file type
is *IFS the first node of the path (not including a
starting / if present) will not be stored. For example if
the file is '/pkzshare/mypath1/mypath2/myfile', then it
will be stored as 'mypath1/mypath2/myfile'.

*NO Store only the file name specified in the FILES(..)
parameter.

*YES Store all path levels and the file name that is specified in
the FILES(..) parameter including the leading '/' for IFS
files using absolute path selection. This option is not
recommended and is not valid according to the APPNOTE
standards for file names in the archive.

Data EBCDIC Translation Mbr (TRAN)
Specifies the translation table for use with translating data from the IBM i EBCDIC
character set to the character set used in the archive file (normally the ASCII
character set). A default internal table is predefined (see Appendix D Translation Tables).

*ISO88591 The predefined internal table for translation. This table
provides translation that is consistent with the ISO
8859-1 definitions. This table uses the EBCDIC code
page 037 and the ASCII code page 819 for translation.

188

*INTERNAL To provide some compatibility to pre V8 version,
*INTERNAL will use the internal tables that were the
default in V5 PKZIP

membername Specify the member name in the file PKZTABLES that
will be parsed and used to translate "File names and
comments" files to the archive character set. The
member should have the exact format of member
ISO9959_1 in file PKZTABLES. See Appendix D for
defining translation tables.

Archive File (TYPARCHFL)
This parameter specifies the file system to create the archive and the archive
constraints.

Archive File Type (*DB |*IFS)

Specifies the type of file system in which the archive file exists or that it will be
created in (see parameters ARCHIVE and TMPPATH for additional information).

*DB Archive files are to be in the QSYS Library file system.
Even though *DB is working with archive files that are in
the QSYS library file system, the IFS is utilized for
performance.

*IFS Archive files are to be in the Integrated Files System
(IFS).

Files to Zip Type (TYPFL2ZP)
Specifies the type of file system for the file to be zipped.

*DB Files to be zipped are in the QSYS Library file system.

*IFS Files to be zipped are in the IFS (Integrated Files
System).

*IFS2 Files to be zipped are in the IFS (Integrated Files
System) -NON Case Sensitive selection.

Display detail levels (VERBOSE)
Specifies how the detail will be displayed during a PKPGPZ run.

The possible values are:

*NORMAL Displays most informative message to show the PKPGPZ
program processing.

*NONE Displays only major exception information.

*ALL Displays all messages.

*MAX Used only for debugging purposes.

 189

Verify Passphrase (VPASSWORD)
Specifies a verification passphrase against the entered passphrase since the
PASSWORD() is not visible. This parameter is required for all encryption methods
except ZIPSTD. VPASSWORD() follows all the rules of PASSWORD() and must match
exactly to the archive passphrase entered in PASSWORD() parameter or the run will
be terminated.

190

10 PKPGPU “PKWARE OpenPGP
UNZIP” Command

PKPGPU Requires Smartcrypt

PKPGPU Command Summary with Parameter Keyword Format
The PKPGPU command provides the ability to process an OpenPGP archive file that
was created according to RFC 4880.

To extract an OpenPGP file from the IBM i OS command prompt screen, the
command format is simply: PKPGPU. Press Enter or PF4 to display the command
prompt screen . The parameter keywords are displayed on this screen, together with
the available keyword options. If the command and parameter keywords are entered
together on the command line the required format is:

PKPGPU keyword1(option) keyword2(option) . . . keywordn(option)

Keywords are demarcated by spaces. The keyword “ARCHIVE” is the only positional
keyword where the keyword is not required. Whenever the word “path” is used, its
meaning depends on the file system that is being used. If IFS is used, path refers to
the open system true path type. If the library systems or *DB is used, path means
library/file and then the file name refers to the member name.

 PKWARE OpenPGP PKPGPU 16.1(PKPGPU)
Type choices, press Enter.
OpenPGP Archive File Name . . .

Archive File Type *DB *DB, *IFS
Extract File Type *DB *DB, *IFS
Processing Action *VIEW *VIEW, *EXTRACT, *TEST
File Data Types *DETECT *DETECT, *TEXT, *BINARY
Default Path *CURRENT

Drop Stored Path *NONE *NONE, *ALL, *LIB
Archive Passphrase

 191

Overwrite existing File *PROMPT *NO, *YES, *PROMPT
Outlist Details:
 Type *BOTH *BOTH, *SEND, *PRINT
 License Info. *SHORT *NORMAL, *SHORT, *NONE...
Display detail levels *NORMAL *NORMAL, *NONE, *ALL, *MAX
Default DB Create Rec. length . 1024 50-32000
Decryption Recipients :
 LookUp Type *PGPDEF *PGPDEF
 Handle Handle
 Recipient

 Passphrase
 Required *RQD *RQD, *OPT
 + for more values

Authenticator OpenPGP Keys:
 LookUp Type *PGPDEF *PGPDEF
 Handle Handle
 Authenticator

 Required *RQD *RQD, *OPT
 + for more values

Authenticate Filters:
 Validate Level *SYSTEM *VALIDATE, *REQUIRED...
 Validate Type *NONE *NONE, *ARCHIVE
 Filters *SYSTEM *SYSTEM, *EXPIRED...

OpenPGP Key Ring Definitions:
 Key Ring Handle *NONE Handle
 Pub/Pvt Type *PUB Type
 Key Ring Engine *FILE Character value, *FILE
 Engine Name

 + for more values

OpenPGP Rules:
 Encryption Key Select . . . *NONE *NONE, *LATESTVALID...
 Signing Key Select *NONE *NONE, *LATESTVALID...
File EBCDIC Translation mbr . . *ISO88591 Mbr Name
Data EBCDIC Translation mbr . . *ISO88591 Mbr Name
Create a List Out file *NONE

External Conversion Flags . . . *NONE Character value, *NONE
File types of List Files *DB *DB, *IFS
CVTNAME Extra Pass Data

IFS Code Page *NO Valid Code Page
Algorithm Facilities:
 Encryption: *DFT *DFT, PKSW, IBMSW...
 Hashing: *DFT *DFT, PKSW, IBMSW...

PKPGPU Command Keyword Details

Archive File(ARCHIVE)
Specifies the path/file name or the library/file name of the OpenPGP archive to be
processed.

Note: This is a required parameter.

The format depends on whether you will be using the archive file in the Library File
System or the Integrated File System (IFS).

See parameter TYPARCHFL for file system type information.

192

• Library File System: Format is Library/File(Member). If Member is
omitted, it will use the file name for the member.

• IFS: Open system path followed by the archive file name.

OpenPGP Signature Authentication (AUTHCHK)
This parameter specifies that OpenPGP signature authentication processing should be
performed for specific signers. This parameter is used in conjunction with the
AUTHPOL parameters and its settings.

It is possible that more than one OpenPGP key may be returned for a single common
name or email search. As a result, each one will be added to the list of validating
sources.

When no specific OpenPGP keys are requested, any signatories found in the archive
are validated in accordance with the AUTHPOL() policy settings in effect.

There are four entries for AUTHCHK.

Lookup Type (*PGPDEF)

The Lookup type defines where the authenticator searches for the appropriate string
to access the public key.

*PGPDEF The Authenticator string uses the Keyring definition to
access the OpenPGP key.

Handle (The KeyRing Handle string name)

The KeyRing Handle matches up with proper supplied KeyRing (See PGPDEF).

Keyring Handle String name up to 8 bytes.

Authenticator (The Authenticator string name)

The Authenticator string format depends on what was specified for the Lookup type.

• If lookup type is *PGPDEF, the Authenticator string will either be an email
address or the common name of the OpenPGP key. This depends on the
configuration setting in PKCFGSEC PGPKEYPUB and PGPKEYPVT
parameters. To override the default selection mode, you can prefix the
string with EM= for email, CN= for the common name or KEYID= for the
key ID.

For example:

AUTHCHK((*PGPDEF handle 'CN=John Doe' *RQD))
AUTHCHK((*PGPDEF handle 'EM=john.doe@pkware.com' *RQD))
AUTHCHK((*PGPDEF handle 'KEYID=1234567890123456' *RQD))
NOTE: A matching handle name must be specified in the PGPDEF field.

Required (*RQD|*OPT|*SAME)

Available values:

 193

*RQD If *RQD, then this Authenticator MUST be found during
the selection and the certificate MUST be valid certificate
with a private key or the ZIP/UNZIP run will fail.

*OPT The Authenticator is optional. If it cannot be found or is
invalid the process will continue.

For example:AUTHCHK((*PGPDEF handle 'CN=John Doe' *RQD))
AUTHCHK((*PGPDEF handle 'EM=john.doe@pkware.com' *RQD))
AUTHCHK((*PGPDEF handle 'KEYID=1234567890123456' *RQD))
NOTE: A matching handle name must be specified in the PGPDEF field.

Usage Notes:

Processing will be terminated if none of the requested keys can be accessed,
regardless of the "R" required flag. If multiple requests are made and at least one
signature is found, processing will continue normally.

Authenticate Filters (AUTHPOL)
This parameter defines the processing options and filters that should take place if a
signed archive is encountered.

There are three entries for the AUTHPOL parameter.

Validate Level (*VALIDATE |*WARN |*REQUIRED |*NONE |*SYSTEM)

The Validate Level specifies the type of authentication processing that should take
place if the program encounters a signed archive . If *SYSTEM is specified, the
enterprise setting from PKCFGSEC is used.

*SYSTEM The enterprise setting from PKCFGSEC is used.

*VALIDATE Indicates that when authentication takes place and a
failure occurs based on the filters, the run will be
considered a failure and the message issued when the
job terminates will indicate one or more errors during
the run.

*WARN Indicates that when a failure occurs during
authentication, the failure is only considered a warning.
The messages at the end of the run will not consider any
failed authentications as errors.

*REQUIRED Indicates that authentication MUST take place and if any
failure occurs based on the filters, the run will be
considered a failure and the message issued when the
job terminates will indicate one or more errors occurred
during the run. If the archive has not been signed then
an error will be issued.

*NONE Indicates no authentication will take place even though
the archive has been signed.

194

Validate Type (*NONE |*ARCHIVE)

The Validate Type specifies whether authentication will take place if the archive has
been signed. The default is *NONE and any other value requires the Enhanced
Encryption Feature.

*NONE Indicates no authentication will take place even though
the archive has been signed.

*ARCHIVE Indicates that a signed archive will be authenticated.

Filters (*SYSTEM | *TAMPER | *EXPIRED | *NOTAMPER | *NOTEXPIRED)

Available values:

*SYSTEM All filter policies are from the global settings.

*TAMPER This sub-parameter signifies that a verification of the
data stream should be done against the digital
signature.

*EXPIRED This sub-parameter signifies that date range validation
should be performed on the OpenPGP keys. Although the
term "expired" is used, a key that has not yet reached
its valid data range specification will fail.

*NOTAMPER Negates the *TAMPER filter.

*NOTEXPIRED Negates the *EXPIRED filter.

For example:

AUTHPOL(*SYSTEM *ALL *NOTEXPIRED)
AUTHPOL(*AUTH *ALL *NOTEXPIRED)

External Conversion Pass Data (CVTDATA)
Specifies the extended data passed to the external program CVTNAME. When
CVTFLAG is not *NONE, the contents of the parameter is passed to provide extended
flexibility in controlling how the IBM i names are stored in the archive. See Appendix
C, “External Name Conversion Program” in the System Administrator’s Guide for
more details on CVTNAME.

External Pgm Conversion Extended Data

Specify up to 255 bytes of unedited data that is passed
to the exit program CVTNAME to assist in controlling the
program logic.

External Conversion Flags (CVTFLAG)
Specifies the flags passed to the external program CVTNAME. These are used to
control how the IBM i names are stored in the archive. See Appendix C, “External
Name Conversion Program” in the System Administrator’s Guide for more details on
CVTNAME.

The allowable values are:

 195

*NONE Conversion exit is not active

*400 Use the included sample CVTNAME program section that
does not change the names.

Conversion Flags Specify a 5-byte flag that is passed to the exit program
CVTNAME to control the program logic. If the name
passed back is blank, then conversion is referred back to
the setting of the CVTTYPE parameter.

Default DB Create Rec. length (DFTDBRECLN)
Specifies the record length to use when creating a file in the QSYS Library system. If
TYPFL2ZP parameter is *DB, and the file being extracted does not exist nor does
extended attribute for the record length exist, the file will be created with the record
length specified in this parameter.

The allowable values are:

132 Default is record length of 132 to match previous
versions.

Record-Length A decimal number from 50 to 32000.

Drop Stored Path (DROPPATH)
Used to drop the path or libraries of files in the archive, therefore only using the file
names in the archive. This is used along with the keyword EXDIR where the default
path is defined when dropping the path on files in the archive.

For example, if the file in the archive is "path1/path2/filename" (IFS) or
"Library/File/member" (QSYS), and if DROPPATH is *ALL, the file being extracted
would be "filename" or "member". If *LIB was used the file being extracted would be
path1/filename" or "File/member".

The allowable values are:

*NONE Do not remove paths and/or libraries in the archive.

*ALL Remove all paths that are stored in the archive, leaving
only an IFS file name or member name.

*LIB Remove only the first path (which in most case could be
the library).

Encryption Recipients (ENTPREC)
The Encryption/Decryption Recipient parameter defines one to many recipients to
include for the ZIP and UNZIP process. The specification of this recipient ENTPREC
parameter triggers encryption to take place during ZIP processing utilizing the found
recipients along with any passphrase that may be entered.

There are five entries for the ENTPREC parameter:

196

Lookup Type (*PGPDEF)

The Lookup type defines the type of recipient search to find the appropriate recipient
string.

*PGPDEF OpenPGP key access is defined in a key definition (See
PGPDEF).

Handle (The Keyring Handle string name)

The Keyring Handle is used to match up with proper supplied keyring (See PGPDEF).

KeyRing Handle String name up to 8 bytes.

Recipient (The recipient string name)

The Recipient string format depends on what was specified for the Lookup type that
is, CN=, EM=, KEYID=, or *ALL.

• If type is *PGPDEF - The recipient string will either be an email address,
common name or Key ID of the OpenPGP key.

For example,

ENTPREC((*PGPDEF handle 'CN=John Doe' (password) *RQD))
ENTPREC((*PGPDEF handle 'EM=john.doe@pkware.com' (password) *RQD))
ENTPREC((*PGPDEF handle 'KEYID=1234567890123456' (password) *RQD))

NOTE: A matching handle name must be specified in the PGPDEF field.

Passphrase (Private Cert Passphrase)

The passphrase is required to access the private key.

Required (*RQD|*OPT)

If *RQD, then this recipient MUST be found during the selection and MUST be a valid
OpenPGP key or the ZIP/UNZIP run will fail.

*RQD The Recipient is required to be found and valid.

*OPT The Recipient is optional. If cannot be found or is invalid
the process will continue.

For example,

ENTPREC((*PGPDEF handle 'CN=John Doe' (password) *RQD))
ENTPREC((*PGPDEF handle 'EM=john.doe@pkware.com' (password) *RQD))
ENTPREC((*PGPDEF handle 'KEYID=1234567890123456' (password) *RQD))
NOTE: A matching handle name must be specified in the PGPDEF field.

Default Path (EXDIR)
If the archive being extracted has no paths stored, EXDIR specifies the default
location for the extracted files. The path definition depends on the "file system type"
in parameter TYPFL2ZP. This will happen where the files may come from a PC.

• If the "file system type" is IFS, EXDIR will point to the paths defined for
your IBM i open systems and the default path will be the current directory

 197

settings (issue the command DSPCURDIR to see the current directory
settings).

• If the "file system type" is the Library File System, EXDIR will point to
either a Library or a Library/Filename. The default is *CURLIB/UNZIPPED;
if the file UNZIPPED does not exist, then it is dynamically created with a
record length of 132. It is best to create a default file with the record
length of your choice, because if a text file is extracted with a record
length greater than the file's record length, the record will be truncated to
fit the record length.

• If EXDIR is coded with keyword ?MBR and the file system is the QSYS
Library system, PKPGPU will use the member name for the file name. For
example: EXDIR('newlib/?MBR') and DROPPATH(*ALL) parameters are
coded and the file name in the archive is "mylib/myfile/mymbr". The file
will extract to "newlib/mymbr(mymbr)". This is only valid for
TYPFL2ZP(*DB) files.

*CURRENT Current directory for IFS or *CURLIB/UNZIPPED for the
QSYS Library file system.

path Enter the path or path/path/.. in which to extract. The
layout depends on the file system in which the file is to
be created.

Library File System:

 The format is "Library", "Library/File" or "Library/?MBR"

Integrated File System (IFS):

 The format is "path1/path2/../pathn"

Algorithm Facilities (FACILITY)
FACILITY defines the Encryption and Hashing Algorithm APIs that are available and
their sequences. At this time there are only two facilities of APIs:

• PKWARE

• IBM Software Security.

There are two entries for the FACILITY parameter.

Encryption: (*DFT |PKSW |IBMSW | PKSW_IBMSW | IBMSW_PKSW)

Defines which Encryption Facility APIs will be used during the run.

*DFT Defines that the encryption facility used is from the
environment setting defined in the PKCFGSEC parameter
FACENC.

PKSW Use PKWARE API for encryption.

IBMSW Use IBM Software API for encryption.

PKSW_IBMSW Both PKWARE API and IBM Software API are available
for encryption, but use PKWARE API if available.

198

IBMSW_PKSW Both IBM Software API and PKWARE API are available
for encryption, but use IBM Software API if available.

Hashing: (*DFT |PKSW |IBMSW | PKSW_IBMSW | IBMSW_PKSW)

Defines which Hashing Facility APIs will be used during the run.

*DFT Defines that the hashing facility used is from the
environment setting defined in the PKCFGSEC parameter
FACHASH.

PKSW Use PKWARE API for hashing.

IBMSW Use IBM Software API for hashing.

PKSW_IBMSW Both PKWARE API and IBM Software API are available
for hashing, but use PKWARE API if available.

IBMSW_PKSW Both IBM Software API and PKWARE API are available
for hashing, but use IBM Software API if available.

File Types (FILETYPE)
Specifies whether the files selected are treated as text or binary data. For text files
added to an archive, trailing spaces in each line are removed, the text is converted
to ASCII (based on the translation tables) by default and a carriage return and line
feed (CR/LF) are added to each line before the data is compressed into the archive.
Binary files are not converted at all.

The default (and recommended) setting is *DETECT, which analyzes the data to
determine the file type.

*DETECT Attempt to detect the appropriate file type for UNZIP
processing.

*TEXT Specifies that the file selected is a text file and
translation will be performed using the translate tables
specified in the TRAN option.

*BINARY Specifies that the file selected is a binary file and no
translation should be performed.

*EBCDIC Specifies that the file selected is a text file and leaves it
in EBCDIC without performing any translation. This is
good only if the file is to be used on an IBM i or IBM-
type mainframe. If it is unzipped to a PC file, then a
translation from EBCDIC to ASCII would be required.

File EBCDIC Translation Mbr (FTRAN)
Specifies the translation table for use in translating File names, comments, and
passphrases from the IBM i EBCDIC character set to the character set used in the
archive file (normally ASCII character set). A default internal table is predefined. See
Appendix D for additional information.

*ISO88591 The predefined internal table for translation. This table
provides translation that is consistent with the ISO

 199

8859-1 definitions. This table uses the EBCDIC code
page 037 and the ASCII code page 819 for translation.

*INTERNAL To provide some compatibility to pre V8 versions of
PKZIP, *INTERNAL will use the internal tables that were
the default in V5 PKZIP

membername Specify the member name in the file PKZTABLES that
will be parsed and used to translate File names and
comments files to the archive character set. The
member should have the exact format of member
ISO9959_1 in file PKZTABLES. See Appendix D for
defining translation tables.

File IFS Code Page (IFSCDEPAGE)
If this option is set to *NO, the PKPGPU program will write IFS files with the code
page that is registered for the file or the default job code page. Please note that if
files are to be extracted to a case-sensitive file system, the case-sensitive format of
file names must be used before they can be selected.

The possible values are:

*NO The PKPGPU program will read IFS files with the code
page registered for the file. This is the default.

Code-Value The PKPGPU program will write the IFS files with the
specified code page value.

Outlist Details (MSGTYPE)
This parameter specifies where displayed output will be outputted and the type of
licensing splash screen to provide.

There are two entries for the MSGTYPE parameter: (Detail Type, and License Info.)

Archive File Type (*BOTH |*PRINT | *SEND)

Specifies where messages and information should be displayed. The PKPGPU
program has the ability to send messages that appear on the log and/or the ability to
print to stdout and stderr. If working interactively, stdout and stderr will show upon
the dynamic screen. If submitted via batch, you can override them to print in an
OUTQ or build a CL and save them to an outfile.

*BOTH Send the information to the log with send message
commands and also to stdout and stderr.

*PRINT Send the information to stdout and stderr.

*SEND Send the information to the log with send message
commands.

License Info. (*NORMAL |*SHORT |*NONE |*COPYRIGHT)

Specify what type of license and copyright information to display.

200

*NORMAL Displays all license and copyright information.

*SHORT Displays base licensing/copyrights.

*NONE Displays only registration information.

*COPYRIGHT Displays copyright and trademark details from $COPYRIT
file.

Overwrite Existing Files (OVERWRITE)
Controls how the PKPGPU program reacts when extracting a file to a location where a
file with the same name already exists. To help prevent accidental overwriting of
files, the default is *NO. The allowable values are:

*NO Never overwrite files. If the file already exists then the
archive file will be skipped and not extracted. This is the
default.

*YES Always overwrite files. If the file exists, it will be
overwritten with no message or prompting.

*PROMPT When a file being extracted already exists, PKPGPU will
issue warning message AQZ0262 and prompt the user
for the required action.

Archive Passphrase (PASSWORD)
Use this option to specify a decryption passphrase if the file(s) to extract were
encrypted to the archive with a passphrase. This passphrase may be up to 260
characters in length and is case-sensitive.

Since the passphrase is entered in EBCDIC, the translation table referenced in the
FTRAN parameter is used to translate it to ASCII. Care should be taken when using
the FTRAN override and when using a passphrase. To use passphrase-protected files,
the same FTRAN override option is required.

OpenPGP Keyring Definition (PGPDEF)
Specifies the 'handle' name and other settings to be used with the matching
ENTPREC, and AUTHCHK options.

Keyring Handle Enter the desired 'handle' name

PUB/PVT Type Specifies the desired key type

Keyring Engine Specifies the access method to the OpenPGP keys.

Engine Name Specifies the name for the appropriate access method.

 For example:

 201

 If *FILE is specified for the Keyring Engine, the Engine
Name would be the name of the file that contains the
OpenPGP keys.

OpenPGP Rules (PGPRULES)

Requires Smartcrypt

PGPRULES are the base rules settings for PKPGPU processing and consists of two
options.

Example: PGPRULES(LATESTVALID LATESTVALID)

Encryption Key Select (*NONE|*LATESTVALID|*LASTVALID|*FIRSTVALID|*FIRST
|*LAST|*LATEST|*SYSTEM)

Use Encryption Key Select to restrict which OpenPGP keys are used to represent a
user or organization for each encrypted file. The setting applies to the ENTPREC
parameter specifying key selection from an OpenPGP keyring with either an email
(EM=) or common name (CN=) selection clause. (Generic requests for an entire
OpenPGP keyring or KEYID= are not affected by these settings).

When using OpenPGP public keys for recipients, it is possible to locate more than one
key for a target recipient based on email or common name. By default, all matching
keys that pass the ENCRYPOL policy setting will be chosen for use. However, it may
be desirable to limit the encryption to a specific key based on a key's declared time
range or location within the OpenPGP keyring.

Note:

• When a key has no expiration date, an implied timestamp of Mon Jan 18
22:14:07 2038 is used for comparison purposes.

• If multiple keys having the same timestamp are encountered during a
time-based comparison For *FIRSTVALID, *LASTVALID or *LATESTVALID,
the first valid key encountered will be used.

Options:

*NONE No matching will be performed. Every encipherment key
located in the designated OpenPGP keyring matching the
search criteria will be counted as a viable recipient.

*FIRST The first encipherment key located in the designated
OpenPGP keyring matching the search criteria will be
counted as a viable recipient.

*LAST The last encipherment key located in the designated
OpenPGP keyring matching the search criteria will be
counted as a viable recipient.

*LATEST The encipherment key having the latest expiration date
(timestamp) in the designated OpenPGP keyring
matching the search criteria will be counted as a viable
recipient.

202

*FIRSTVALID The first encipherment key having a valid date range in
the designated OpenPGP keyring matching the search
criteria will be counted as a viable recipient.

*LASTVALID The last encipherment key having a valid date range in
the designated OpenPGP keyring matching the search
criteria will be counted as a viable recipient.

*LATESTVALID The most recent encipherment having the latest
expiration date (timestamp) with a valid date range
including the current date/time in the designated
OpenPGP keyring matching the search criteria will be
counted as a viable recipient.

*SYSTEM Use the enterprise setting from PKCFGSEC parameter
PGPRULE for “Encryption Key Select”.

Usage Notes:

Once a qualified key is selected, it must pass the associated ENCRYPOL policy
settings to be used for encryption.

When 'date range' is referred to, the specificity is actually a time stamp within a
given day.

The "VALID" settings are helpful when the ENCRYPOL=EXPIRED policy is desired to
be enforced and there are expired (or not yet valid) keys that might be selected.
When this form of the command value is used, keys outside of the valid date range
will be bypassed in the selection process.

The key found must be of a supported level or type to be used. In the event that the
selection criteria and key select settings identify an unsupported or undesired key,
the KEYID= search criteria should be used in the ENTPREC parameter to specify the
precise key to be used.

Signing Key Select (*NONE|*LATESTVALID|*LASTVALID|*FIRSTVALID|*FIRST
|*LAST|*LATEST|*SYSTEM)

This option sets the system settings for PKPGPU parameter PGPRULES Signing Key
Select.

Use Signing Key Select to restrict which OpenPGP key is used to represent a user or
organization when generating a digital signature for an OpenPGP file. The setting
applies to an AUTHCHK parameter specifying key selection from an OpenPGP keyring
with either an email (EM=) or common name (CN=) selection clause. (Generic
requests for an entire OpenPGP keyring or KEYID= are not affected by these
settings).

When using OpenPGP private-keys for signing, it is possible to locate more than one
key for use as a signatory based on email or common name. Smartcrypt for IBM i
does not assess whether a key is accessible as part of the key selection process.

Note:

• When a key has no expiration date, an implied timestamp of Mon Jan 18
22:14:07 2038 is used for comparison purposes.

 203

• If multiple keys having the same timestamp are encountered during a
time-based comparison For *FIRSTVALID, *LASTVALID or *LATESTVALID,
the first valid key encountered will be used.

Options:

*NONE No matching will be performed. Every signing key
located in the designated OpenPGP keyring matching the
search criteria will be counted as a viable recipient.

*FIRST The first signing key located in the designated OpenPGP
keyring matching the search criteria will be counted as a
viable recipient.

*LAST The last signing key located in the designated OpenPGP
keyring matching the search criteria will be counted as a
viable recipient.

*LATEST The signing key having the latest expiration date
(timestamp) in the designated OpenPGP keyring
matching the search criteria will be counted as a viable
recipient.

*FIRSTVALID The first signing key having a valid date range in the
designated OpenPGP keyring matching the search
criteria will be counted as a viable recipient.

*LASTVALID The last signing key having a valid date range in the
designated OpenPGP keyring matching the search
criteria will be counted as a viable recipient.

*LATESTVALID The most recent signing having the latest expiration
date (timestamp) with a valid date range including the
current date/time in the designated OpenPGP keyring
matching the search criteria will be counted as a viable
recipient.

*SYSTEM Use the enterprise setting from PKCFGSEC parameter
PGPRULE for “Signing Key Select”.

Usage Notes:

Once a qualified key is selected, it must pass the associated AUTHPOL policy settings
to be used for encryption.

When 'date range' is referred to, the specificity is actually a time stamp within a
given day.

The "VALID" settings are helpful when the AUTHPOL = EXPIRED policy is enforced
and there are expired (or not yet valid) keys that might be selected. When this form
of the parameter value is used, keys outside of the valid date range will be bypassed
in the selection process.

The key found must be of a supported level or type to be used. In the event that the
selection criteria and key select settings identify an unsupported or undesired key,

204

the KEYID= search criteria should be used in the AUTHCHK parameter to specify the
precise key to be used.

AUTH2PASSALGS (*DEFAULT|*MD5|*SHA1|*SHA256|*SHA384|*SHA512)

When authenticating older OpenPGP files NOT containing 1-pass signature algorithm
information packets, this setting predisposes which hashing algorithms to run for an
AUTHCHK. Algorithms MD5 and SHA1 are chosen as defaults because older
OpenPGP file implementations were more likely to use these algorithms.
Note:

• Additional algorithms may be added to the configuration list if needed.

• An algorithm may be removed from the list to improve performance if no
2-pass authentication is expected for that algorithm.

Options:

*DEFAULT Only MD5 and SHA1 will be processed.

*MD5 MD5 will be added to the list of algorithms to run for
authentication.

*SHA1 SHA1 will be added to the list of algorithms to run for
authentication.

*SHA256 SHA256 will be added to the list of algorithms to run for
authentication.

*SHA384 SHA384 will be added to the list of algorithms to run for
authentication.

*SHA512 SHA512 will be added to the list of algorithms to run for
authentication.

AUTH2PASSMODE (*LITERAL|*BINARY|*TEXT|*BOTH)

When authenticating older OpenPGP files not containing 1-pass signature algorithm
information packets, this setting predisposes which hashing mode to run for an
AUTHCHK. RFC 4880 section 5.2.1 describes the modes of hashing (binary or
canonical text documents) declared in the Signature Type tags.

*LITERAL processing will derive the default hashing mode based on the Literal Tag
Format field (b-BINARY or t-TEXT). This assumes that the creating program of the
OpenPGP file synchronized the Literal Data format with that of the Signature mode.

If a different mode is required (as indicated by the Signature Tag) for authentication
to be performed, BINARY, TEXT or both may be set. Canonical Text document
signature processing in RFC 4880 requires that records be formatted internally with
CRLF (x'0D0A') for the purpose of hash calculations, regardless of the actual record
delimiters used in the data stream. This introduces processing overhead due to the
dual processing of records.

Note:
• This setting is not active when a signature algorithm/mode pre-declarative

packet is present in the OpenPGP file.
Options:

*LITERAL Attempt to detect BINARY or TEXT from Literal Tag
Format Field.

 205

*BINARY Add BINARY as mode to be processed.

*TEXT Add TEXT as mode to be processed.

*BOTH Process as both BINARY and TEXT.

Data EBCDIC Translation Mbr (TRAN)
Specifies the translation table for use with translating data from the IBM i EBCDIC
character set to the character set used in the archive file (normally the ASCII
character set). A default internal table is predefined (see Appendix D Translation
Tables”).

*ISO88591 The predefined internal table for translation. This table
provides translation that is consistent with the ISO
8859-1 definitions. This table uses the EBCDIC code
page 037 and the ASCII code page 819 for translation.

*INTERNAL To provide some compatibility to pre V8 versions of
PKZIP, *INTERNAL will use the internal tables that were
the default in V5 PKZIP

membername Specifies the member name in the file PKZTABLES that
will be parsed and used to translate data files to the
archive character set. The member should have the
exact format of member ISO9959_1 in file PKZTABLES
(see Appendix D for defining translation tables).

Archive File Type (TYPARCHFL)
Specifies the type of file system in which the archive file will exist (see parameters
ARCHIVE and TMPPATH for additional information).

Archive File Type (*DB |*IFS)

*DB Archive files are to be in the QSYS library file system.
Even though *DB is working with archive files that are in
the QSYS library file system, the IFS is utilized for
performance and for large file support (ZIP64). To
provide an option for archive file reading utilizing
exclusively the QSYS library system, use
TYPARCHFL(*XDB), which will support IBM i features
such as "Adopt Authority".

*IFS Archive files are to be in the Integrated File System
(IFS).

Type of processing action (TYPE)
The TYPE keyword specifies the type of action the PKPGPU program should perform
on the ZIP archive. The possible types are:

206

*EXTRACT Extract files from the archive (please refer to the
DROPPATH, CNVTYPE, TO, and EXDIR parameters for
controlling the conversion of file names extracted from
the archive).

*TEST Tests the integrity of files in the archive by extracting
files without writing the data.

*VIEW Will output information about all files or selected files
contained in an archive.

Files to Zip Type (TYPFL2ZP)
Specifies the type of file system that contains the files to be unzipped.

*DB Files to be unzipped are in the QSYS Library file system.

*IFS Files to be unzipped are in the IFS (Integrated File
System).

Display detail levels (VERBOSE)
Specifies how much detail will be displayed during a PKPGPU run.

The possible values are:

*NORMAL Displays most informative message to show the PKPGPU
program processing

*NONE Displays only major exception information.

*ALL Displays all messages.

*MAX Used only for debugging purposes.

 207

11 PKQRYCDB “Query Cert Database”
Command

PKQRYCDB Requires Smartcrypt

PKQRYCDB Command Summary with Parameter Keyword
Format
PKQRYCDB is a utility command to query the certificate locator database files or a
certificate file in the IFS.

NOTE: OpenPGP keyrings are only supported on IFS.

Keywords are demarcated by spaces. In many cases there are multiple entries for a
parameter where each entry is again demarcated by spaces. For more information
about the command process reference the IBM home page for your version of the
operating system.

 Smartcrypt Query Cert Db (PKQRYCDB)
Type choices, press Enter.
Processing Type *SUMMARY *SUMMARY, *LEVEL1, *ALL
 File Type *DB *FILE, *DB, *P7B
 Certificate Type *ALL *PUBLIC, *PRIVATE, *ALL
 Selection Name __

 Cert Passphrase.
 Logging Level *LOG *NOLOG, *LOG, *MAXLOG

PKQRYCDB Command Keyword Details

RUNTYPE - Processing Type

RUNTYPE (*SUMMARY|*LEVEL1 |*SELECT|*ALL)

The processing type determines the amount of details that PKQRYCDB will display.
The possible type codes are:

208

*SUMMARY - Shows only one line per selected item and is based on the
selection type (CN= or EM=)

*LEVEL1 - Displays the common name, email address and the certificate path
and file name

*SELECT - Displays a display file of certificates based on the selection type.
The items can be browsed or selected for a detail display of the certificates. If
the certificate dates have expired, the dates will be highlighted.

*ALL - Displays a complete set of details for each certificate; could be 20-40
lines per file

FTYPE - File Type

FTYPE (*FILE| *DB | *P7B | *CRL | *PKCS12)

The file type determines the type of path/file name in the parameter FNAME.

If *DB is selected, PKQRYCDB will search the database based on the contents
of the FNAME. For example, CN=Bill* will search for all certificates with a
common name that starts with Bill regardless of upper case or lower case.

If *FILE is selected, then FNAME should be a very specific certificate file (full
path included).

*P7B will read a specific file that should be in a P7B format. It will then do a
detailed display for the contents of the P7B certificate store.

*CRL will read a specific file that should be in a CRL format. It will then do a
detailed display for the contents of the CRL file.

*PKCS12 will read a specific file that should be in a PKCS12 format. Password
is required. It will then do a detailed display for the contents of the PKCS12
file.

CTYPE - Certificate Type

CTYPE (*ALL| *PUBLIC | *PRIVATE)

CTYPE specifies the type of certificates, private or public, that will be processed in
this run.

*ALL will process both public and private certificates.

*PUBLIC specifies that only public certificates should be processed. No
passphrase should be supplied.

*PRIVATE indicates that only private-key certificates should be processed and
requires that a passphrase be entered.

 209

FNAME - File Name

FNAME (Path/File name)

If FTYPE is *DB, the FNAME contents will be the selection criteria for the certificate
locator database. It should contain the prefix of the field to select, such as CN= for
common name and EM= for email address. Selection is not case-sensitive. If the
selection ends in an asterisk (*), a generic selection is made for all certificates
starting with the selection criteria.

If FTYPE is *FILE, the contents of FNAME contains the IFS file that will used to query
the certificate contents. Specify the full path and file name of the specific certificate
file.

PASSWORD - Certificate Passphrase

PASSWORD (Certificate Private Key Passphrase)

Processing the private key certificate with RUNTYPE(*ALL) requires the passphrase
used when the certificate was exported to open and gather the contents. The
passphrase is used only to open the certificate to gather the database data; it is not
stored or saved. The certificate is not altered in any way.

LOGLVL - Logging Level

LOGLVL (*LOG|*NOLOG |*MAXLOG)

Specifies the level of logging (printing/viewing) used during a PKQRYCDB run.
LOGLVL(*NOLOG) shows only a minimal amount of information. LOGLVL(*MAXLOG)
shows more details, with some detail useful only for problem determination.

Sample Displays

Request RUNTYPE(*SUMMARY) to generate and display a report containing additional
information about the certificate.

 PKQRYCDB RUNTYPE(*SUMMARY) FNAME('cn=will*')

PKQRYCDB QUERY Smartcrypt Cert DataBase starting------2004/11/16 07:37:28
PKQRYCDB Start Search Summary for <cn=will*>
 Public Key CN=William S. Somebody
 Public Key CN=William Somebody
 Public Key CN=William Somebody
Private Key CN=William Somebody
 Public Key CN=William Somebody

PKQRYCDB Run Totals:
 Total Records In Error =0
 Total Records Processed =5
PKQRYCDB Scan ending------

210

Request RUNTYPE(*Level1) to generate and display a report containing additional
information about the certificate.

 PKQRYCDB RUNTYPE(*LEVEL1) FNAME('cn=will*')

PKQRYCDB QUERY Smartcrypt Cert DataBase starting------2004/11/16 07:39:34
PKQRYCDB Start Search Level 1 for <cn=will*>
 Public Key CN=William S. Somebody
 EM=sombody@worldnet.att.net
 FN=William S. Somebody
 File </yourpath/PKWARE/Cstores/public/williamsSomebody.cer>
 Public Key CN=William Somebody
 EM=bill.Somebody@pkware.com
 FN=William Somebody
 File </yourpath/PKWARE/Cstores/public/billSomebody03.cer>
 Public Key CN=William Somebody
 EM=bill.Somebody@pkware.com
 FN=William Somebody
 File </yourpath/PKWARE/Cstores/public/bill_Somebody2003.cer>
Private Key CN=William Somebody
 EM=bill.Somebody@pkware.com
 FN=William Somebody
 File </yourpath/PKWARE/Cstores/private/billSomebody03.pfx>
 Public Key CN=William Somebody
 EM=bSomebody@pkware.com
 FN=William Somebody
 File </yourpath/PKWARE/Cstores/public/billSomebody.cer>

 PKQRYCDB Run Totals:
 Total Records In Error =0
 Total Records Processed =5
 PKQRYCDB Scan ending------

Request RUNTYPE(*ALL) to generate and display a report containing additional
information about the certificate.

 PKQRYCDB RUNTYPE(*ALL) FTYPE(*FILE)
 FNAME('/yourpath/PKWARE/Cstores/public/billSomebody03.cer')

PKQRYCDB QUERY Smartcrypt Cert DataBase starting------2004/11/16 07:43:50

 Public Key Found File </yourpath/PKWARE/Cstores/public/billSomebody03.cer>
 CN=William Somebody
 EM=bill.Somebody@pkware.com
 FN=William Somebody

--- Certificate ---
William Somebody
Subject:
 O=VeriSign, Inc.
 OU=VeriSign Trust Network
 OU=www.verisign.com/repository/RPA Incorp. by Ref.,LIAB.LTD(c)98
 OU=Persona Not Validated
 OU=Digital ID Class 1 - Microsoft Full Service
 CN=William Somebody
 E=bill.Somebody@pkware.com
Issuer:
 O=VeriSign, Inc.
 OU=VeriSign Trust Network
 OU=www.verisign.com/repository/RPA Incorp. By Ref.,LIAB.LTD(c)98
 CN=VeriSign Class 1 CA Individual Subscriber-Persona Not Validated
SerialNumber:

 211

 3F55 2A91 2B5A 9F9B 46E0 D8A0 96DB DDAB
NotBefore:
 Mon Jul 21 19:00:00 2003
NotAfter:
 Wed Jul 21 18:59:59 2004
SHA-1 Hash of Certificate:
 D5 CE FF A5 72 EF B6 53 EA 75 F7 CA 2E 01 85 7B
 65 7C B8 E7
Public Key Hash:
 6E 16 CF EF FA A0 99 25 2B 79 DE E6 23 C7 D7 42
 80 82 F3 E4
End Entity

PKQRYCDB Run Totals:
 Total Records In Error =0
 Total Records Processed =1
PKQRYCDB Scan ending------

The following table explains the fields of the certificate details in the display.

Heading Description

Subject Information about the entity to whom the certificate was
issued

Issuer Information about the entity that issued the certificate

Serial Number Serial number of the certificate

NotBefore/NotAfter Date range for which the certificate is valid

SHA-1 Hash of Certificate The SHA-1 algorithm hash, or “thumbprint,” of the
certificate

Public Key Hash The hash, or “thumbprint,” of the public key

Key Usage Key usage flags that determine how the certificate was
intended to be used

Fingerprint/Thumbprint The fingerprint is a unique string of characters that exactly
identifies a key.

OpenPGP Key ID (OpenPGP keyring only) The KeyID is similar to the
Fingerprint. However the KeyID only contains the last 8
characters of the fingerprint. Most of the time it is possible
to identify a key with only the KeyID, but occasionally two
keys may have the same ID.

The public key hash value is the prime key used in the local certificate store index.

The Issuer fields are composed of several X.509 subfields. The exact set varies. The
following table describes some of the most commonly used.

Code Description

O Organization

OU Organizational Unit

CN Common Name

E or EM Email address

C Country

ST State or Province

L Locality or City

212

The common name (CN) and email (E) fields can be searched to identify recipients.

Request RUNTYPE(*SELECT) to generate a browse screen containing additional
information about the certificate. This provides the ability to fold and unfold for more
information. To display details as shown above, enter a 5.

 PKQRYCDB RUNTYPE(*SELECT) FNAME('cn=P*')
Folded

 4/06/10 08:20:04 Query Certificate Database PKQCD01D
 *CN=PKWARE Test9
 Type option - Press Enter.
 5-View 8-Verify
 Option Document
_ CN=PKWARE Test1
_ CN=PKWARE Test3
_ CN=PKWARE Test3
_ CN=PKWARE Test4
_ CN=PKWARE Test4
_ CN=PKWARE Test9

F3-Exit F9-Fold/UnFold F12-Return

F9 to Unfold
 4/06/10 08:20:04 Query Certificate Database PKQCD01D
 *CN=PKWARE Test9
 Type option - Press Enter.
 5-View 8-Verify
 Option Document
 CN=PKWARE Test1
 Public 04/14/2004-04/13/2024 NOTTRUSTED NOTREVOKED Code= CES
 EM=PKTESTDB1@nowhere.com
 File=/yourpath/testroot/CStore/Public/pktestdb1.cer

 CN=PKWARE Test3
 Public 12/20/2004-12/13/2024 TRUSTED NOTREVOKED Code= E
 EM=PKTESTDB3@nowhere.com
 File=/yourpath/testroot/CStore/Public/pktestdb3.crt

 +
 F3-Exit F9-Fold/UnFold F12-Return

 4/06/10 08:20:04 Query Certificate Database PKQCD01D
 *CN=PKWARE Test9
 Type option - Press Enter.
 5-View 8-Verify
 Option Document
 CN=PKWARE Test3
 Private 12/20/2004-12/13/2024 TRUSTED NOTREVOKED Code= E
 EM=PKTESTDB3@nowhere.com
 File=/yourpath/testroot/CStore/Private/pktestdb3.p12

 CN=PKWARE Test4
 Public 12/20/2004-12/13/2024 TRUSTED NOTREVOKED Code= E
 EM=PKTESTDB4@nowhere.com
 File=/yourpath/testroot/CStore/Public/pktestdb4.crt

 +

 F3-Exit F9-Fold/UnFold F12-Return

 213

 4/06/10 08:20:04 Query Certificate Database PKQCD01D
 *CN=PKWARE Test9
 Type option - Press Enter.
 5-View 8-Verify
 Option Document
 CN=PKWARE Test4
 Private 12/20/2004-12/13/2024 TRUSTED NOTREVOKED Code= E
 EM=PKTESTDB4@nowhere.com
 File=/yourpath/testroot/CStore/Private/pktestdb4.p12

 CN=PKWARE Test9
 Private 02/08/2005-12/14/2024 TRUSTED REVOKED Code= E
 EM=PKTESTDB9@nowhere.com
 File=/yourpath/testroot/CStore/Private/pktestdb9.pfx

 F3-Exit F9-Fold/UnFold F12-Return

214

12 Processing with GZIP

What Is GZIP?
GNU Zip is a different standard for handling compressed file data in an archive. Support for
the GZIP standard can be found in various utilities for many platforms. This format is not
compatible with Smartcrypti archives; however, Smartcrypti provides limited support for
GZIP archives (Information regarding RFC processes for information interchange with regard
to GZIP can be found at www.faqs.org/rfcs).

RFC 1951 is the specification that describes the DEFLATE compressed data format that is to be
used with GZIP archives. Smartcrypti creates a compression stream that is compatible with
this format.

RFC 1952 describes the GZIP archive format specifications. Differences from Smartcrypti
archives include:

• All GZIP file names must be represented in lower case.

• Both binary and text data are supported by GZIP; however, the LATIN-1 translation
table is the defined standard for EBCDIC/ASCII file name translation (ISO 8859-1).

Why Use GZIP?
GZIP may be useful when doing file exchanges to a platform only having a GZIP support
utility.

Although GZIP has an almost limitless capacity, it has other significant limitations that make it
less attractive than Smartcrypti for most applications.

• GZIP lacks a “directory” of the files contained within it. In addition, files contained
within a GZIP archive can only be found in a serial fashion. (GZIP and ZIP have
different nomenclature. Whereas a ZIP archive stores “files”, these data entities are
known as “members” in a GZIP archive.)

• The file information controls provided in GZIP archives cannot be fully reported on
until the entire data stream is decompressed.

http://www.faqs.org/rfcs

 215

• The GZIP format may not be recognized by other products providing ZIP archive
support, and thereby restricts its cross-platform usefulness.

PKZIP and Smartcrypt for z/OS Implementation Notes for GZIP
The DEFLATE compression algorithm used in GZIP is similar to the compression logic used in
Smartcrypti archives. The archive format is compatible with GZIP processes running on other
platforms, although extensions provided by Smartcrypti may not be supported by other
utilities.

The standard GZIP archive format maintains a header entry at the beginning that describes
the name of the file and a timestamp. A CRC integrity value is also maintained, however, this
value is stored at the end of the file along with the original size of the input file.

GZIP Restrictions
• The Smartcrypti implementation for GZIP is restricted to one file within an archive.

For this reason, only the ADD Action for a new archive is supported. Do not
attempt to FRESHEN an existing file within an archive, add additional files, or delete
a file from an archive.

• Only the first file in a GZIP archive from another platform will be processed by
UNZIP processing. For this reason, when creating GZIP archives on other platforms
with IBM i as the target system, only place one file in each GZIP archive file.

• An existing archive must be processed in accordance with its archive type, such as,
Smartcrypti or GZIP. For example, an existing Smartcrypti archive cannot have
GZIP data appended to it. A message will be issued and processing will be
terminated if this rule is not followed.

• VIEW processing will not report the CRC or file size information because of the way
GZIP archives hold the information.

• Only COMPRESS(*STORE) and COMPRESS(*TERSE) are not part of the GZIP
standard, and is therefore ignored by the compression engine.

• The GZIP standard does not support strong encryption.

• The GZIP standard does not support digital signatures.

• Parameter FTRAN is not valid for GZIP because file names have to be held in the
ISO 8859-1(LATIN-1) character set..

GZIP Extensions
• As a proprietary extension, standard (96 bit) password encryption support is

provided beyond the RFC standard.

• File attributes can be stored in the GZIP archive (just as they are in a Smartcrypti
archive) so that the file can be reconstructed during EXTRACT processing.

• File name control parameters such as STOREPATH, CVTTYPE or CVTFLAG may be
used.

216

• During EXTRACT processing, if the GZIP archive does not contain a file name (not
required by GZIP specifications), then a file name is constructed with the contents
of the EXDIR parameter. If EXDIR was not specified the run will end in error.

• Although the default specification for GZIP processing is to handle data as *BINARY,
Smartcrypti will use the FILETYPE parameter with *DETECT or *TEXT processing.

• Although the GZIP standard does not support directory levels in the file name,
many products (including Smartcrypti) support this as an extension.

• Although the timestamp in the archive is in UNIX-format and is by specification to
be UTC, Smartcrypti honors the TIMESTAMP command.

Processing GZIP Archives
In general, a GZIP archive must be processed only in GZIP mode and with only one GZIP
“member.” When creating a GZIP archive, specify GZIP(*YES) in the command stream.
UNZIP processing in Smartcrypti automatically detects the GZIP header and processes
accordingly.

Special Note on GZIP Passphrases
GZIP standard processing (RFC 1952) does not normally allow a passphrase to be placed on a
GZIP archive. Smartcrypti does allow this feature, but its use may cause compatibility issues
with other platforms. PKZIP for MVS does use the same passphrase standard, so GZIP
archives with passphrases can be exchanged between Smartcrypt for IBM i, SecureZIP for
zSeries, and PKZIP for MVS. Because GZIP archives that are created with a passphrase with
SecureZIPi or PKZIP for MVS™ are not part of the GZIP standards, these files will probably
appear to be corrupt on other platforms.

Sample GZIP Processing

Compressing a file
The following example shows how to compress a file into a GZIP archive. The PKZIP command
is used to compress data into an archive. To select the GZIP format for the resulting archive,
you must use the GZIP(*YES) option with the PKZIP command:

PKZIP ARCHIVE(‘MYLIB1/MYARCHFIL(GZ01)’) FILES('TESTLIB1/FILE1TXT') TYPE(*ADD) GZIP(*YES)

The command above will compress the text file TESTLIB1/FILE1TXT into the archive
MYLIB1/MYARCHFIL(GZ01) in GZIP format. The archive must not already exist or an error
message will be generated and the operation will fail.

The output from the above command should look like the following:

File MYARCHFIL created in library MYLIB1.

Scanning files for match ...
File MYARCHFIL in library MYLIB1 with member GZ01 not found.

 217

Found 1 matching files
Member GZ01 added to file MYARCHFIL in MYLIB1.
Member GZ01 removed from file MYARCHFIL in MYLIB1.
Member PZ3AF2447F added to file MYARCHFIL in MYLIB1.
Compressing TESTLIB1/FILE1TXT(FILE1TXT) in TEXT mode
Add TESTLIB1/FILE1TXT/FILE1TXT -- Deflating (31%)
Member PZ3AF2447F renamed to member GZ01.
Member GZ01 file MYARCHFIL in MYLIB1 changed.
PKZIP Compressed 1 files in GZIP Archive MYLIB1/MYARCHFIL(GZ01)
PKZIP Completed Successfully

218

13 Processing with OpenPGP

Overview: OpenPGP vs. X.509
Some organizations use encryption tools based on the OpenPGP standard, rather
than X.509. OpenPGP uses the same basic Public Key Infrastructure principles for
exchanging encrypted files, but uses a decentralized “Web of Trust” method of
authenticating signatures.

Smartcrypt extracts and decrypts files that comply with the OpenPGP standard, RFC
4880. Smartcrypt can also create OpenPGP-compliant files and sign files with
OpenPGP certificates. In this section, you’ll learn more about the OpenPGP standard,
and how to use Smartcrypt with OpenPGP.

Note: This guide assumes you have some knowledge of, and experience working
with OpenPGP files, and does not include a comprehensive introduction to
OpenPGP.

As described in “Public-Key Infrastructure and Digital Certificates” in chapter 2,
"Introduction to Data Security,” the X.509 standard relies on a hierarchical “trust
chain” model, where an individual digital signature is issued by an intermediate
Certificate Authority (CA), which is assumed to have received enough documentation
to determine that an individual is who he says he is. The intermediate CA’s certificate
gets its certificate, in turn, from a Root CA. Each certificate says who issued it, and
theoretically if you question the authenticity of a certificate, you can find the
documentation presented to the original CA.

OpenPGP certificates are typically created by individuals, and authenticated by other
individuals. In the real world, you have friends who can vouch that you are who you
say you are. If you walk into a room full of strangers, your friend can introduce you
to the people he knows. Since you trust that your friend is correctly identifying his
friends and acquaintances, your trust extends to his friends too.

When you translate the above experience to the electronic, OpenPGP world, it works
this way: You create an OpenPGP certificate to identify yourself. When a friend
comes to visit, display the certificate. The friend can now sign your certificate (often
called “key signing”) and certify that this certificate represents you. Now everyone
who trusts the person who signed your key can also trust that your certificate is

 219

authentic. A Web of Trust is developed as more people authenticate each certificate.
Everyone in the Web of Trust can also exchange messages in the OpenPGP format.

Preparing to use OpenPGP Keys
Once Smartcrypt is installed, the command prompts may assist you in setting up
keyring configuration definitions and generating commands to execute Smartcrypt in
OpenPGP mode.

Note: PGPDEF configuration settings provide a description of where OpenPGP
public and secret keyrings reside. They also provide a name (also referred to as a
‘handle’) that commands will refer to when requesting OpenPGP key operations for
encryption and signature processing.

Setting Up OpenPGP Keyrings
You can group together collections of OpenPGP keys using named handles. This
operation simplifies the process of selecting individual keys for archive recipients and
signers.

Note: PGPDEF stores OpenPGP keyrings separately from the Smartcrypt Key Store
Index, and does not use the same commands.

1. In the OpenPGP Administration Page, select DEF.
2. Specify a new/existing dataset in the “Config File:” field
3. When specifying your OpenPGP keyrings for the first time, keep the Edit field set

to N. Edit may be used to modify/delete existing PGPKEYRDEFs in the Config File.
4. Enter the required fields in Add PGPKEYRDEF:

a. Description: Description of the Handle
b. Handle: An 8-character name to be referenced with -RECIPIENT and -

SIGN_ARCHIVE commands.
c. Type: Specify whether the “Key File” is a Public or Private (or Both) key file
1. Key File: File/data set name of the OpenPGP Key File to be assigned to the

Handle; one containing private (aka secret) keys for signing and decryption
along with their public-key pairings and another only containing public keys of
other parties for encryption and signature authentication as described below,
usually containing public keys of external trading partners

Configuring Contingency Keys in OpenPGP Mode
You may configure one or more OpenPGP keys to act as contingency keys. A
contingency key enables the enterprise to decrypt and access file(s) in an archive
when other RECIPIENTs are no longer able or eligible. To define an OpenPGP-based
contingency key:

1. Define a read-accessible OpenPGP keyring file (keyring-file) containing the
public keys to be used as contingency keys.

2. Configure PKCFGSEC to reference the keys to be used as contingency keys. A
form of the setting may be chosen such that multiple, or specific keys be
included from the keyring.

Using KEYID:

220

PKCFGSEC TYPE(*UPDATE) ENTPREC(*PGPDEF 'KEYID=xxxxxxxx' *RQD)
PGPKEYPUB(CONTING *FILE '/yourpath/keyring-file')

Using CN:
PKCFGSEC TYPE(*UPDATE) ENTPREC(*PGPDEF 'CN=name' *RQD)
PGPKEYPUB(CONTING *FILE '/yourpath/keyring-file')

Using EM:
PKCFGSEC TYPE(*UPDATE) ENTPREC(*PGPDEF 'EM=email address'
*RQD)
PGPKEYPUB(CONTING *FILE '/yourpath/keyring-file')

Configuration Settings Unique to OpenPGP Processing

PGPDEF
Various operational settings that govern OpenPGP work flow.

“Allow Keys for Smartcrypt” option for PKCFGSEC – Enable OpenPGP keys for ZIP
mode processing. This command is NOT used when processing OpenPGP files.

AUTH2PASSALGS(MD5,SHA1,SHA256,SHA384,SHA512)} – When authenticating older
OpenPGP files not containing 1-pass signature algorithm information packets, this
setting predisposes which hashing algorithms to run for an AUTHCHK. Algorithms
MD5 and SHA1 are chosen as defaults because older OpenPGP file implementations
were more likely to use these algorithms.

• Additional algorithms may be added to the configuration list if needed.

• An algorithm may be removed from the list to improve performance if no
2-pass authentication is expected for that algorithm.

AUTH2PASSMODE(LITERAL|[BINARY[,]TEXT])} – When authenticating older OpenPGP
files not containing 1-pass signature algorithm information packets, this setting
predisposes which hashing mode to run for an AUTHCHK. RFC 4880 section 5.2.1
describes the modes of hashing (binary or canonical text documents) declared in the
Signature Type tags.

• Default processing will derive the default hashing mode based on the
Literal Tag Format field (b-BINARY or t-TEXT). This assumes that the
creating program of the OpenPGP file synchronized the Literal Data format
with that of the Signature mode.

• If a different mode is required (as indicated by the Signature Tag) for
authentication to be performed, BINARY, TEXT or both may be set.

• Canonical Text document signature processing in RFC 4880 requires that
records be formatted internally with CRLF (x’0D0A’) for the purpose of
hash calculations, regardless of the actual record delimiters used in the
data stream. This introduces processing overhead due to the dual
processing of records.

• This setting is not active when a signature algorithm/mode pre-declarative
packet is present in the OpenPGP file.

 221

PGPDEF
Defines an OpenPGP Keyring

• One or more PGPDEF statements may be included for the PKPGPZ or
PKPGPU command, or implicitly included command streams as directed by
the PKCFGSEC module.

• OpenPGP keyrings may be separated by type (for example, one containing
private (aka secret) keys for signing and decryption along with their
public-key pairings, and another only containing public keys of other
parties for encryption and signature authentication), or you can provide a
consolidated OpenPGP keyring by declaring the same handle name for
public and private ring file names.

• PUB or PVT declares the basic key type for the ring as described below

o PUB – Equivalent to an Address Book, usually containing public
keys of external trading partners.

• May be used for encryption
• May be used for signature authentication
• Multiple address book specifications may be provided
• Only public keys are examined (or processed) from this ring

o PVT – Equivalent to “My” certificates.

• May be used in encryption (public key portions only)
• Used in decryption (passphrase required to access private key

in ENTPREC command)
• Used in signature creation with SIGNERS (passphrase required to

access private key)
• Ring_handle declares a unique identifier to be referenced when RECIPIENTs

or SIGNers are requested. (Also useful in reporting)

o The same handle name may be used to join a private and secret
ring together into one unit.

o Multiple PGPDEF statements with different handles may be declared
to access different OpenPGP keyrings in the same execution.

• FILE declares the name of the file-based OpenPGP keyring (for example,
the Integrated File System (IFS) file name).

Example 1

In this example, both the public and private keyrings are joined under the handle
name “MYSTORE” so that public keys may be accessed from both in a single
ENTPREC command:

ENTPREC((*PGPDEF MYSTORE 'key_selection_criteria' *RQD))

PGPDEF((MYSTORE *PVT *FILE '/yourpath/secring.pgp')

 (MYSTORE *PUB *FILE '/yourpath/pubring.pgp'))

222

Example 2

In this example, differing public and private keyrings are declared with different
handle names so that public keys may be used from each keyring in different
ENTPREC commands. In addition, a signature is applied from the local secret
keyring. Various forms of selection criteria (Email address, Common name and
OpenPGP KEY ID) are also demonstrated.

ENTPREC((*PGPDEF US 'EM=key_selection_criteria' *RQD)

 (*PGPDEF THEM 'CN=key_selection_criteria' *RQD))

SIGNERS(*PGPDEF US 'KEYID=key_selection_criteria' passphrase *RQD)

PGPDEF((US *PVT *FILE '/yourpath/our_secring.pgp')

 (THEM *PUB *FILE '/yourpath/their_pubring.pgp'))

Example 3

In this example, public keyrings are declared with different handle names
representing various departmental keyrings. All valid keys from each ring are
included as recipients.

ENTPREC((*PGPDEF MRKTING *N *RQD)

 (*PGPDEF SALES *N *RQD)

 (*PGPDEF FINANCE *N *RQD))

PGPDEF((MRKTING *PUB *FILE '/yourpath/MRKTING_pubring.pgp')

 (SALES *PUB *FILE '/yourpath/SALES_pubring.pgp')

 (FINANCE *PUB *FILE '/yourpath/FINANCE_pubring.pgp'))

Also see the following members in QCLSRC for additional examples:

PKOPGP01 - Sample OpenPGP encryption/signing verification job

PKOPGP02 - Sample create an encrypted ZIP using OpenPGP keys

Note: both jobs use the test OpenPGP keys in the archive TSTOPGPZ.

Creating OpenPGP Archives
Creating an OpenPGP archive is basically the same as creating a ZIP archive. See
PKPGPZ "PKWARE OpenPGP ZIP" Command.

You must use the PKPGPZ to create OpenPGP files.

 223

A common technique used with OpenPGP to process multiple files is to place the
files into a TAR and then apply OpenPGP encryption and/or digital signatures to
the TAR. If you have more than one file to wrap with an OpenPGP key, a two-step
process is required. You will first need to create a TAR archive to store the files in.
Smartcrypt will then apply OpenPGP to your TAR.

Viewing OpenPGP Files
The steps required to view the contents of an OpenPGP file are essentially the same
as with viewing any other supported file type. Use “*VIEW” for the "Type of
processing action (TYPE)”.

You must use the PKPGPU to view OpenPGP files.

Opening OpenPGP Files
Opening (or decompressing) an OpenPGP file is basically the same as opening a ZIP,
with some modifications to the available options. Use “*EXTRACT” for the "Type of
processing action (TYPE)”.

Some processing restrictions apply based on the OpenPGP file architecture. For
example, the directory information is not independently accessible from the data
portion of the OpenPGP file:

• If encrypted, a decryption key is required to perform a View of the
filename and related metadata stored in the OpenPGP Literal Tag

• Decryption and Inflation are required to access the filename and other
metadata.

• Inasmuch as the OpenPGP file format does not retain file data sizes
(compressed or uncompressed), in order for a VIEW request to report on
file size information, the entire data file must be decrypted and
decompressed for byte counts to be accumulated.

Working with OpenPGP Files Encoded with “ASCII Armor”
Section 2.4 of the OpenPGP standard, RFC 4880, describes ASCII Armor (Radix-64)
this way:

OpenPGP’s underlying native representation for encrypted messages,
signature certificates, and keys is a stream of arbitrary octets. Some systems
only permit the use of blocks consisting of seven-bit, printable text. For
transporting OpenPGP’s native raw binary octets through channels that are
not safe to raw binary data, a printable encoding of these binary octets is
needed. OpenPGP provides the service of converting the raw 8-bit binary
octet stream to a stream of printable ASCII characters, called Radix-64
encoding or ASCII Armor.

224

PKPGPU will automatically read any Armor files and Armor key rings, but in some
cases there may be a need to convert the Armor file to a binary file. Use PKARMOR
to decode an Armor file to a binary file.

When decoding a Radix-64 file, the file is first examined to determine if the file is in
ASCII or EBCDIC and whether the file contains End-Of-Line control characters. The
file must contain the appropriate OpenPGP header and trailer along with a valid
CRC24. The data must all be in BASE64 characters otherwise the decoding will fail.

 Example:

PKARMOR TYPE(*DECODE)
INF('/yourpath/armor_archive.pgp')
OUTF('/yourpath/archive.pgp')

Note: All special header keys (Version, Comment, MessageID, Hash, and Charset)
are ignored and bypassed.

Note: The utility will only decode one file per ARMOR file. If there are multiple
headers inside a file only the first one is decoded.

Valid PGP Header -----BEGIN PGP MESSAGE-----

Valid PGP Trailer: -----END PGP MESSAGE-----

Run the PKSCNPGP utility to verify the OpenPGP binary file.

PKARMOR will also encode an OpenPGP Binary file to an ARMOR file as either ASCII
or EBCDIC.

When encoding an OpenPGP to an ARMOR file, each data line of a newly created file
will be a maximum of 76 bytes. If the file is to be created in ASCII, the file format is
not as important since it will be a stream file with Line Feed characters separating
the data lines. A valid OpenPGP header and trailer will be part of the encoding along
with a proper CRC24 as per the specifications of RFC 4880.

 Example:

PKARMOR TYPE(*ENCODE) MODE(*ASCII)
INF('/yourpath/archive.pgp')
OUTF('/yourpath/armor_archive.pgp')

PKARMOR Command Summary with Parameter Keyword Format
 The PKARMOR utility may be used to perform the following:

• DECODE an ASCII-ARMOR (Radix-64) file to a binary file

• ENCODE a file to an ASCII-ARMOR file (ASCII-translation)

• ENCODE a file to an ASCII-ARMOR file (EBCDIC-translation)

Note: Only the first matching OpenPGP message or key header will be processed.

 PK ARMOR Conversion Utility (PKARMOR)
Type choices, press Enter.

Conversion Type *DECODE, *ENCODE
 [ENCODE] File Format *EBCDIC *EBCDIC, *ASCII
 [DECODE] Only Header Type . . *MESSAGE *MESSAGE, *PUBLIC, *PRIVATE
Input File

 225

Output File

PKARMOR Command Keyword Details

[DECODE] Only Header Type(DHDR)
As previously noted, only the first matching OpenPGP message or key header will be
processed. If an OpenPGP file contains multiple header types, a specific type may be
processed by using one of the following options:

*MESSAGE DECODE or ENCODE the first OpenPGP MESSAGE in a
file.

*PUBLIC DECODE or ENCODE the first OpenPGP PUBLIC key in a
file.

*PRIVATE DECODE or ENCODE the first OpenPGP PRIVATE key in a
file.

Input File(INF)
Specifies the existing IFS path/file name of the input file.

[ENCODE] File Formats(MODE)
The possible file types are:

*EBCDIC Output file (OUTF) is to be created as EBCDIC.

*ASCII Output file (OUTF) is to be created as ASCII.

Output File(OUTF)
Specifies the IFS path/file name of the output file.

Note: If the output file already exists, it will be overwritten.

Conversion Type(TYPE)
The possible conversion types are:

*DECODE

When decoding a Radix-64 file, the file is first examined to determine if the file is in
ASCII or EBCDIC and whether the file contains End-Of-Line control characters. The
file must contain the appropriate OpenPGP header and trailer along with a valid
CRC24. The entirety of the data must be in BASE64 characters otherwise the
decoding will fail.

226

Note: All special header keys (Version, Comment, MessageID, Hash, and Charset)
are ignored and bypassed.

The utility will only decode one message or key per file. If there are multiple headers
inside a file, only the first one is decoded.

Example of a valid OpenPGP Header and Trailer:

-----BEGIN PGP MESSAGE-----
-----END PGP MESSAGE-----

Run the CPGPSCAN utility afterward to verify the OpenPGP binary file.

*ENCODE

Consider your target environment before encoding with PKARMOR. For example, if
the intended target of the ASCII-ARMOR file is Windows, UNIX or any other ASCII-
based platform, ASCII translation is preferred. If the desired platform is EBCDIC-
based, the encoded ASCII-ARMOR file should preferably be defined as Fixed Block
with a record length of 80. Each data line of the newly created file will have a
maximum of 76 bytes. An ASCII-ARMOR file encoded with ASCII translation consists
of a stream file with Line Feed characters separating the data lines. A valid PGP
header and trailer will be part of the encoding along with a proper CRC24 as per the
specifications of RFC 4880.

OpenPGP Support Exclusions
The following features have been determined to be out of scope for SecureZIP for
IBM i v14.

• “Optional” automatic handling of embedded TAR internal files.

• Original file metadata is not preserved in OpenPGP files.

• “Optional” TAR – Without TAR, one and only one file may be processed
(although the RFC does not prohibit stacked OpenPGP packets to
represent multiple files).

• PKPGPZ is limited to ADD for creating a new OpenPGP file (no updating).

• PKPGPZ file selection is limited to 1 and only 1 file.

• ADVCRYPT(RC4) and ADVCRYPT(AE_2) are not supported for OpenPGP
files.

• ADVCRYPT(STANDARD) is not supported for OpenPGP files.

• ADVCRYPT(DES) is not supported for OpenPGP files.

• ADVCRYPT(CAST5) is not supported for ZIP archives.

• FNE(*NO) is not supported (FNE is implied) with OpenPGP files.

• UTF-8 data formats will be detected and handled as BINARY with a
message.

• UTF-8 data translation must be prepared by the user before ‘literal packet’
create.

• SIGNERS to support one signatory for OpenPGP file creation (although
spec supports multiple).

 227

• DSA keys are only to be used with signing/authentication for OpenPGP
files, not ZIP format archive.

• DSA-1024 and DSA-2048 bit keys only are supported for signing or
authentication-TAMPERCHECK.

• SIGNERS(*FILE) is not supported with OpenPGP files.

• zlib and Bzip2 compression methods are supported for the extraction of
input OpenPGP archives from other sources.

• AUTHCHK(*FILE) is not supported with OpenPGP files.

• Certificate Revocation Lists (CRLs) are not supported.

• OpenPGP Contingency Keys must be provided in PKCFGSEC.

• ENCRYPT_CERT_LIMIT limits (3275) currently in effect for creation.

• FACILITY(IBMSW) is not supported for CAST5.

• Self extractors do not support OpenPGP extraction.

• FTRAN will be ignored for filename characters (UTF-8 required).

• Only one file (native LITERAL packet, or tar) will be supported for
EXTRACTION.

• Non-ZIP conforming OpenPGP encryption key sizes will negate use of keys
for ZIP processing.

• Non-ZIP conforming OpenPGP signing key sizes will negate use of keys for
ZIP processing.

Signed Message Files
Some OpenPGP products have the capabilities to create “Signed Message” or
“Cleartext Signature” files. Section 7 of the OpenPGP standard, RFC 4880,
describes the Cleartext Signature Framework. Smartcrypt has the capability to read
and process this type of file.

This file type has clear text in ASCII that is readable (non armoring) and the
readable text is signed with a valid OpenPGP signature stored in ASCII Armor (Radix-
64). The signed text is still readable without special software.

In order to bind a signature to a cleartext, the framework used consists of:

• The cleartext header '-----BEGIN PGP SIGNED MESSAGE-----' on a single
line,

• "Hash" Armor Header to define which hash is used for signing,

• Exactly one empty line not included into the message digest,

• The dash-escaped cleartext that is included into the message digest,

• The ASCII armored signature(s) including the '-----BEGIN PGP
SIGNATURE-----' Armor Header and '-----END PGP SIGNATURE-----'
Armor Tail Lines.

As with binary signatures on text documents, a cleartext signature is calculated on
the text using canonical <CR><LF> line endings. The line ending (i.e., the
<CR><LF>) before the '-----BEGIN PGP SIGNATURE-----' line that terminates the

228

signed text is not considered part of the signed text. Also, any trailing whitespace --
spaces (0x20) and tabs (0x09) -- at the end of any line is removed when the
cleartext signature is generated.

Since the signature is very specific to line control characters and exact text, it is
important that the text is not disturbed. You should always transfer this type of file
as a binary stream file so it is read as an ASCII file. Since Smartcrypt can handle
the file being in EBCDIC, the file should be in variable block. If checking for
authentication with AUTHCHK and the message “ZPEX146W PGP: Signature
authentication failed” appears on the EBCDIC file, it is highly probable that a
transport issue has occurred.

When a hash header is found with verbose, the message “ZPGP014I Signed Message
Data will be hashed with Hash: SHA256 Code=0x08” will be shown.

Examining OpenPGP File Structure with PKSCNPGP
The PKSCNPGP utility program is useful in examining the external packet structure of
an OpenPGP file. A detail line describing each packet block found is listed with a
short description of the type found, the accumulated count of that type, its length
(L=) and whether it is the final packet of that type (0-False, 1-True). Note that the
size of all intermediate packets of a streamed packet sequence must be a power of
2.

When an OpenPGP file is encrypted, the Encryption Key descriptors (types 1 and/or
3) will be followed by Protected Data packets (either 9 or 18 depending on the mode
of encryption chosen by the creating OpenPGP application). All other packets,
Compression (8), Literal data (11), Signatures (2 or 4) will be obfuscated within the
encrypted data packet stream.

Scan an OpenPGP File with PKSCNPGP
An OpenPGP file may be scanned to report on the outer tag layers (ref. RFC 4880
Section 4.3 “Packet Tags”). When a file is compressed and/or encrypted, underlying
tag layers (e.g. Literal and Signatures) will not be visible in the outer layer.
However, the type of encryption keys–symmetric key (passphrase) or public key
(recipient)–will be evident at the beginning of the file.

Example:

CALL PGM(PKSCNPGP) PARM('V' ‘/yourpath/archive.pgp)

Uncompressed/Unencrypted (Literal-only Packet 11) Report
In this sample file, the data was not compressed, encrypted or signed.

PKWARE z/OS PGP File Scan 01 - Copyright. 1989-2021 by PKWARE, Inc.
Valid Types only
In file: /yourpath/archive.pgp
 size : 0
First 256 Bytes <CBEC7427535550504F52542E5454363734372E444154414F55542E46...
0204869676820...
9202020202020202020202020202020202020202850544620554B36303831332920202050...
020...
0>
 Packet 11--Literal Data # 1 L=4096 Final=0
 <0x74> Filename(39)<archive.pgp>
 Packet 11--Literal Data # 2 L=4096 Final=0

 229

 Packet 11--Literal Data # 3 L=4096 Final=0
 Packet 11--Literal Data # 4 L=4096 Final=0
. . .
Packet 11--Literal Data #67 L=3936 Final=1

PKSCNPGP Total found Packet count=67 Len=274341
 67 Total-11--Literal Data
PKSCNPGP - Last 512 Bytes <202020202020202020202020202020202020202...
20343639302B23404C4239202...
203...
2020202020202020202020202034363933202A20436F6E646974696F6E616C20415...
2020202020202020202020202020204D533037323430370D0A20202020202020202...
20202020202020202049462020202028544D2C4D5456545F454E5649524F4E5F464...
31313930380D0A20303030334345203931313020413036302020202020203030303...
204D5456545F454E5649524F4E5F464C4147532C464C475F454E565F41504943414...
PKSCNPGP - buffers read = 274341 <0000000000042FA5>
PKSCNPGP Ending Return Code=0.

Compressed, Encrypted (both recipient and passphrase) and Signed
Report
In this sample file, encryption was performed for multiple public-key recipients
(Packet 1 for each) as well as with a passphrase (Packet 3).

Although the file had also been compressed and signed, those packet tags, along
with the Literal tag are encrypted within the encryption stream (Packet 18).

PKWARE z/OS PGP File Scan 01 - Copyright. 1989-2021 by PKWARE, Inc.
Valid Types only
In file: /yourpath/archive.pgp
 size : 0
. . .
 Packet 1--Public-Key Encrypted Session Key # 1 L=268 Final=1
 Key ID=75123FA08390D29D Algo(08)AES192
 Packet 1--Public-Key Encrypted Session Key # 2 L=268 Final=1
 Key ID=831832A5CAE42D9B Algo(08)AES192
 Packet 1--Public-Key Encrypted Session Key # 3 L=268 Final=1
 Key ID=D267C464064512A1 Algo(07)AES128
 Packet 1--Public-Key Encrypted Session Key # 4 L=268 Final=1
 Key ID=C8D383E996511F03 Algo(07)AES128
 Packet 1--Public-Key Encrypted Session Key # 5 L=396 Final=1
 Key ID=9CE8C7D1F7DB405D Algo(0B)Unknown
 Packet 1--Public-Key Encrypted Session Key # 6 L=268 Final=1
 Key ID=3CFD1698E2127C44 Algo(07)AES128
 Packet 3--Symmetric-Key Encrypted Session Key # 7 L= 30 Final=1
 Algo(03)
 Packet 18--Sym. Encrypted & Integrity Protected Data # 8 L=4096 Final=0
 Packet 18--Sym. Encrypted & Integrity Protected Data # 9 L=4096 Final=0
 Packet 18--Sym. Encrypted & Integrity Protected Data #10 L=4096 Final=0
 Packet 18--Sym. Encrypted & Integrity Protected Data #11 L=4096 Final=0
 Packet 18--Sym. Encrypted & Integrity Protected Data #12 L=4096 Final=0
 Packet 18--Sym. Encrypted & Integrity Protected Data #13 L=4096 Final=0
 Packet 18--Sym. Encrypted & Integrity Protected Data #14 L=4096 Final=0
 Packet 18--Sym. Encrypted & Integrity Protected Data #15 L=4096 Final=0
 Packet 18--Sym. Encrypted & Integrity Protected Data #16 L=4096 Final=0
 Packet 18--Sym. Encrypted & Integrity Protected Data #17 L=4096 Final=0
 Packet 18--Sym. Encrypted & Integrity Protected Data #18 L=4096 Final=0
 Packet 18--Sym. Encrypted & Integrity Protected Data #19 L=4096 Final=0
 Packet 18--Sym. Encrypted & Integrity Protected Data #20 L=4096 Final=0
 Packet 18--Sym. Encrypted & Integrity Protected Data #21 L=4096 Final=0
 Packet 18--Sym. Encrypted & Integrity Protected Data #22 L=1959 Final=1

PKSCNPGP Total found Packet count=22 Len=61106
 6 Total- 1--Public-Key Encrypted Session Key
 1 Total- 3--Symmetric-Key Encrypted Session Key
 15 Total-18--Sym. Encrypted & Integrity Protected Data
. . .

230

PKSCNPGP - buffers read = 61106 <000000000000EEB2>
PKSCNPGP Ending Return Code=0.

Scan an OpenPGP Keyring with PKQRYCDB

Public Keyring Report (ref. “gpg –k”)

PKQRYCDB RUNTYPE(*ALL) FTYPE(*PGPKRF)
 CTYPE(*PUBLIC) FNAME('/yourpath/pubring.pgp')
LOGLVL(*MAXLOG)

PKSCANCRT 002I File to be OpenPGP KeyRing
PKSCANCRT 005I scan(20) file is: '/yourpath/keyring.pgp'
PKSCANCRT 008I OpenPGP KeyRing #0 found (1186) '/yourpath/keyring.pgp'' Type=20
--- OpenPGP Key 0 ---
PKWAREIVPOPGP1
OpenPGP Key ID: 2D55FE62384F37E4
Subject:
 CN=PKWAREIVPOPGP1
 E=noreply@pkware.com
Issuer:
 CN=PKWAREIVPOPGP1
 E=noreply@pkware.com
SerialNumber:
 D78737CD 2665334E FC96592A 7A1A08D8 F159EA04
NotBefore (UTC):
 Wed Oct 19 14:14:13 2011
NotAfter (UTC):
 Mon Jan 18 23:14:07 2038
KeyUsage: 80 00
 :Digital Signature Key Usage
Public Key Hash:
 29 F0 F3 00 D1 10 B8 30 27 D5 88 79 3F E2 00 ED 6D 4C 7D 9C
RSA Public Key - 2048 bits
--- OpenPGP Key 1 ---
PKWAREIVPOPGP1
OpenPGP Key ID: F966907A260233C0
Subject:
 CN=PKWAREIVPOPGP1
 E=noreply@pkware.com
Issuer:
 CN=PKWAREIVPOPGP1
 E=noreply@pkware.com
SerialNumber:
 F579B529 A97F7BFA 17E37BFA 7D4B9FDA E4FD9904
NotBefore (UTC):
 Wed Oct 19 14:14:13 2011
NotAfter (UTC):
 Mon Jan 18 23:14:07 2038
KeyUsage: 30 00
 :Data Encipherment Key Usage
 :Key Encipherment Key Usage
Public Key Hash:
 89 9B AA 98 74 34 6A 11 FE CE 08 1D 0A 90 69 BD E4 B9 0D EE
RSA Public Key - 2048 bits

PKSCANCRT 099I Completed rc=0. 2 OpenPGP Keys processed

Private Keyring Report (ref. “gpg –K”)

PKQRYCDB RUNTYPE(*ALL) FTYPE(*PGPKRF)
 CTYPE(*PRIVATE) FNAME('/yourpath/secring.pgp')

 231

PASSWORD(password) LOGLVL(*MAXLOG)

PKSCANCRT 002I File to be OpenPGP KeyRing
PKSCANCRT 005I scan(20) file is: '/yourpath/keyring.pgp'
PKSCANCRT 008I OpenPGP KeyRing #0 found (2564) '/yourpath/secring.pgp' Type=20
--- OpenPGP Key 0 ---
PKWAREIVPOPGP1
OpenPGP Key ID: 2D55FE62384F37E4
Subject:
 CN=PKWAREIVPOPGP1
 E=noreply@pkware.com
Issuer:
 CN=PKWAREIVPOPGP1
 E=noreply@pkware.com
SerialNumber:
 D78737CD 2665334E FC96592A 7A1A08D8 F159EA04
NotBefore (UTC):
 Wed Oct 19 14:14:13 2011
NotAfter (UTC):
 Mon Jan 18 23:14:07 2038
KeyUsage: 80 00
 :Digital Signature Key Usage
Public Key Hash:
 29 F0 F3 00 D1 10 B8 30 27 D5 88 79 3F E2 00 ED 6D 4C 7D 9C
Private Key Available
RSA Public Key - 2048 bits
--- OpenPGP Key 1 ---
PKWAREIVPOPGP1
OpenPGP Key ID: F966907A260233C0
Subject:
 CN=PKWAREIVPOPGP1
 E=noreply@pkware.com
Issuer:
 CN=PKWAREIVPOPGP1
 E=noreply@pkware.com
SerialNumber:
 F579B529 A97F7BFA 17E37BFA 7D4B9FDA E4FD9904
NotBefore (UTC):
 Wed Oct 19 14:14:13 2011
NotAfter (UTC):
 Mon Jan 18 23:14:07 2038
KeyUsage: 30 00
 :Data Encipherment Key Usage
 :Key Encipherment Key Usage
Public Key Hash:
 89 9B AA 98 74 34 6A 11 FE CE 08 1D 0A 90 69 BD E4 B9 0D EE
Private Key Available
RSA Public Key - 2048 bits
PKSCANCRT 099I Completed rc=0. 2 OpenPGP Keys processed

Invalid Keyring Report

PKSCANCRT 002I File to be OpenPGP KeyRing
PKSCANCRT 005I scan(20) file is: '/yourpath/invalid_keyring.pgp'
PKSCANCRT 008I OpenPGP KeyRing #0 found (800) '/yourpath/invalid_keyring.pgp'
Type=20

PKSCANCRT 099I Completed rc=8. 0 OpenPGP Keys processed

232

14 PKWARE PartnerLink: SecureZIP
Partner

This chapter applies only to participants in the PKWARE SecureZIP Partner
program. Other readers may skip this section.

PKWARE SecureZIP Partner enables a sponsor organization to give partner
organizations that may not have Smartcrypt for IBM i the SecureZIP Partner
application so that sponsor and partner can use Smartcrypt for IBM i to securely
exchange ZIP archives.

About SecureZIP Partner for IBM i
SecureZIP Partner for IBM i is a special version of Smartcrypt for IBM i. It
provides most of the functionality of the full program but works only with archives
created by (or for) a sponsor.

SecureZIP Partner has two modes of operation:

• Read mode: Read mode enables Smartcrypt functionality to extract files
from a ZIP archive signed by a sponsor. In this mode, the program can
decrypt and decompress files and authenticate digital signatures.

In Read mode, the program only extracts; it does not add files to a new or
existing archive and does not compress, encrypt, or sign files. SecureZIP
Partner extracts only archives digitally signed by a sponsor.

• Write mode: Write mode enables Smartcrypt functionality for adding files
to a ZIP archive, including commands to compress, encrypt, and digitally
sign files.

In Write mode, the program can create and update archives, but only for a
designated SecureZIP Partner sponsor and only if the sponsor provides
certificates for SecureZIP Partner to use to encrypt. New or updated archives
are automatically encrypted for sponsor recipients: only those recipients can
decrypt and read the files.

SecureZIP Partner only does certificate-based encryption. It does not do
passphrase-based encryption.

A single copy of the SecureZIP Partner software can process ZIP archives from
multiple sponsors.

 233

See the chapter relating to SecureZIP Partner in the Smartcrypt for IBM i System
Administrator’s Guide for a description of administration and configuration activities
unique to the SecureZIP Partner product.

If You Are a Sponsor: Sign the Central Directory
A sponsor organization uses Smartcrypt as usual to work with archives for, or from,
a partner. There is just one special requirement when creating an archive for a
partner: In order for the partner to be able to extract the archive, you must sign the
central directory of the archive using a certificate included in the Sponsor
Distribution Package. A Sponsor Distribution Package is a package that PKWARE
assembles for a sponsor to configure partners of that sponsor.

Terms and Acronyms Used in This Chapter
The PKWARE SecureZIP Partner program introduces some new concepts and
terminology:

• Sponsor – An installation responsible for initiating and defining a
SecureZIP Partner sponsor-partner relationship with one or more other
installations. A sponsor uses the full-featured Smartcrypt product; a
partner uses the special SecureZIP Partner for IBM i version.

• Partner – An installation configured using a particular sponsor’s Sponsor
Distribution Package (see below) to be a partner of that sponsor. A
partner uses SecureZIP Partner for IBM i to work with archives from,
or for, the sponsor.

• Sponsor Distribution Package – A configuration package distributed to
a partner on behalf of a sponsor to define the authorization requirements
and provide the certificates needed to process ZIP archives from, or for,
the sponsor. The package is digitally signed using a PKWARE-assigned
certificate.

• Sponsor File – A component file in a Sponsor Distribution Package

• Sponsor Imprint – A unique digital representation of a registered
sponsor-partner relationship within the PKWARE SecureZIP Partner
program. This may represent the unique identification of Distribution
Package components or of ZIP archives being read.

• Sponsor/Partner Registration ID – A unique registration number that
identifies a particular sponsor-partner relationship

• Read mode – The mode of SecureZIP Partner UNZIP processing that
extracts archives from (and only from) a SecureZIP Partner sponsor
configured on the partner’s system

• Write mode – The mode of SecureZIP Partner ZIP processing that
creates an encrypted ZIP archive for a particular configured SecureZIP
Partner sponsor

• FF – Acronym for full-featured Smartcrypt operations, as distinct from
those of SecureZIP Partner

234

PKWARE SecureZIP Partner Program: Overview
The PKWARE SecureZIP Partner program provides a straightforward, secure way for
an organization to exchange sensitive information with outside partners.

A SecureZIP Partner sponsor organization establishes a SecureZIP Partner partner
relationship with another organization. As a SecureZIP Partner partner, the external
organization receives the SecureZIP Partner for IBM i application to use to
decrypt and extract archives created by the sponsor using the full Smartcrypt
program. The partner can also use the program to create archives for the sponsor
that only the sponsor can decrypt.

The SecureZIP Partner program used by a SecureZIP Partner partner extracts
archives only from a sponsor and creates and encrypts archives only for a sponsor.

Decrypting and Extracting Sponsor Data (Read Mode)
When SecureZIP Partner is installed at a partner location, a sponsor can create,
digitally sign, and encrypt Smartcrypt secure containers (ZIP archives) for the
partner. In Read mode, the SecureZIP Partner program verifies that the data file
received has the appropriate signature from the sponsor and that the signature is
valid. This confirms that the data is from the expected sender and that no tampering
has occurred. The partner can then decrypt and extract the data.

Creating an Archive for a Sponsor
If a sponsor has provided an encryption key, a partner can also use SecureZIP
Partner (Write mode) to create encrypted ZIP archives for the sponsor. SecureZIP
Partner automatically encrypts any data placed in an archive. The archive can then
be transferred to media or transmitted to the sponsor electronically.

 235

Requirements

License
A license key is provided with the installation package for the system administrator
to use to activate the SecureZIP Partner for IBM i product.

Operating Environment
SecureZIP Partner for IBM i requires the same operating environment as full-
featured Smartcrypt for IBM i.

Configuring as a Partner for a Sponsor
In order to fully process ZIP Archives, the system administrator for SecureZIP
Partner for IBM i must install one or more Sponsor Distribution Packages and
provide the corresponding run-time configuration information for the ZIP and UNZIP
jobs to use. The installed Sponsor Distribution Package determines which archive
signatures are approved for Read mode extract processing and defines the list of
sponsor recipients for whom SecureZIP Partner encrypts new archives.

Functional Overview
SecureZIP Partner for IBM i allows a SecureZIP Partner partner to exchange ZIP
archives with a sponsor. A Sponsor Distribution Package provides the partner
installation with qualifying controls for processing ZIP archives received from or
created for a sponsor. Multiple sponsor profiles with unique processing requirements
can be configured to support exchanges with multiple PKWARE SecureZIP Partner
sponsors.

A given sponsor profile defines the UNZIP and ZIP capabilities for a partner. In a
given sponsor-partner relationship, a partner operates in Read mode to extract
archives and in write mode to create archives (if write mode functionality is
licensed).

See the Smartcrypt for IBM i System Administrator’s Guide for information on
installing Sponsor Distribution Packages.

General Restrictions
Although many features of full-featured Smartcrypt for IBM i are also available to
SecureZIP Partner for IBM i, some limitations apply for these products.

• SecureZIP Partner for IBM i (Read mode) can only open a ZIP archive
that has been digitally signed by a qualified and configured sponsor, as
specified in the Sponsor Distribution Package.

• SecureZIP Partner for IBM i (Write mode) can only encrypt a ZIP
archive for a sponsor-designated set of certificate-based recipients.

Attempts to use features that require operational characteristics outside of the
bounds set above are rejected or ignored.

236

SecureZIP Partner IVP Examples
In the distributed Smartcrypt library, there is a CL program named PLIVPZIP that
runs an initial test with the test distributed package from PKWARE with a Sponsor Id
number of 0. The following two examples excerpt steps from the CLP.

Read mode example: Step EXTRACT will read in the signed archive by sponsor 0
and will extract the files to a file TMPTEST. To authenticate the signed archive,
AUTHCHK((*ARCHIVE *SPONSOR 0)) is required to read in the sponsor ID number
“0” sponsor authentication file.

PKUNZIP ARCHIVE('PKW14053L/PLIVPZIP(PLIVPZIP)')
TYPE(*EXTRACT) EXDIR('PKW14053L/TMPTEST')
DROPPATH(*ALL) PASSWORD('PKWARE, Inc.')
AUTHCHK((*ARCHIVE *SPONSOR 0))

Sample Results of Step EXTRACT:

Digital Certificate Request List:Archive Authenticator
Rqrd Pub *SPONSOR - a0000000.p7
Archive Authenticator List-----------1 processed:
UNZIP Archive: PKW14053L/PLIVPZIP(PLIVPZIP)
Archive Comment:"Smartcrypt for zSeries by PKWARE"
Searching Archive PKW14053L/PLIVPZIP(PLIVPZIP) for files to extract
Archive was signed by "PKWARE SecureZIP Partner TEST Signing Certificate" and
verified
Extracting file SECZIP/READER/README.TXT
Inflating *DB:PKW14053L/TMPTEST(READMETXT) Text
SecureUNZIP extracted 1 files
SecureUNZIP Completed Successfully

Write mode example: Step SLNKZIP will read the file that was extracted above
and create a new archive by selecting files TMPTEST(READMETXT) for compression
with AES256 encryption. The encryption will use the pubic certificates from the
Sponsor ID number “0” recipient file with the parameter ENTPREC((*SPONSOR 0)) or
ENTPREC((*SPONSOR ‘R0000000.p7’)).

PKZIP ARCHIVE('PKW14053L/PLIVPZIP(NEWTESTZ)')
FILES('PKW14053L/TMPTEST(READMETXT)') ADVCRYPT(AES256)
ENTPREC((*SPONSOR 0))

Sample Results of Step SLNKZIP:

Scanning files in *DB for match ...
Digital Certificate Request List:Encryption Recipients
Rqrd Pub *SPONSOR -
/yourpath/PKWARE/PLstore/Sponsor/RECIP/r
0000000.p7
Encryption Recipients List-----------1 processed:
CN=PKWARE SecureZIP Partner TEST Encryption Certificate
EMail=PKWAREPartnerLinkCA@pkware.com
Found 1 matching files
Compressing PKW14053L/TMPTEST(READMETXT) in TEXT mode
Add PKW14053.L/TMPTEST/READMETX.T -- Deflating (69%) encrypt(AES 256Key)
Smartcrypt Compressed 1 files in Archive PKW14053L/PLIVPZIP(NEWTESTZ)
Smartcrypt Completed Successfully

 237

Read Mode (UNZIP) Processing
The following features are provided in Read mode:

• An AUTHCHK(Archive) is automatically performed whenever a ZIP archive
is opened, except in the following cases:

• An AUTHCHK(ARCHIVE) is requested manually

• Any form of View action

• A TEST action without any form of AUTHCHK request

• A TAMPERCHECK policy will always be enforced for authentication,
regardless of the Smartcrypt configuration policy settings.

• The certificate authority trust chain will automatically be honored from the
installed and configured Sponsor Distribution Package during archive
authentication even if the trusted root certificate is not installed in the
local certificate ROOT store.

• If the sponsor also signed files in an archive with the same certificate used
to sign the archive central directory, the same certificate authority trust
chain used to authenticate the archive signature is used to authenticate
signatures on the files.

Restrictions
The following limitations or special behavior applies when Smartcrypt for IBM i is
run in Read/Write mode:

• Archive types (such as GZIP) that do not support signing the archive
central directory are not available

• Unsigned archives are rejected for processing

Archive Authentication Settings
The archive authentication that is automatically performed when a ZIP archive is
opened for Read mode extract processing uses one or more Sponsor Authentication
Configuration Settings to reference an installed Sponsor Authentication File in the
certificate store. This is accomplished by including one or more AUTHCHK
((*ARCHIVE *SPONSOR x) (*ARCHIVE *SPONSOR y)) parameters where x and y are
sponsor ID numbers.

• At least one AUTHCHK((*ARCHIVE *SPONSOR x)) command is required
to access a ZIP archive for extract processing.

• If more than one Sponsor Authentication Configuration Setting command
is provided, then the archive authentication will accept an archive from
any of the represented sponsors.

Example: Unzipping and authenticating an archive from sponsor 0:
 PKUNZIP ARCHIVE('PKW14053L/PLIVPZIP(PLIVPZIP)')
 TYPE(*EXTRACT)
 PASSWORD('PKWARE, Inc.') OVERWRITE(*YES)
 EXDIR('PKW14053L/TMPTEST') DROPPATH(*ALL)
 AUTHCHK((*ARCHIVE *SPONSOR 0))

238

Sample Results:

Digital Certificate Request List:Archive Authenticator
Rqrd Pub *SPONSOR - a0000000.p7
Archive Authenticator List-----------1 processed:
UNZIP Archive: PKW14053L/PLIVPZIP(PLIVPZIP)
Archive Comment:"Smartcrypt for zSeries by PKWARE"
Searching Archive PKW14053L/PLIVPZIP(PLIVPZIP) for files to extract
Archive was signed by "PKWARE PartnerLink TEST Signing Certificate" and verified
Extracting file SECZIP/READER/README.TXT
Inflating *DB:PKW14053L/TMPTEST(READMETXT) Text
SecureUNZIP extracted 1 files
SecureUNZIP Completed Successfully

Decryption Certificate Selection
RECIPIENT private-key/certificate selection follows the rules for full-featured
Smartcrypt for IBM i local certificate store administration and operations.

File Signature Authentication Certificate Selection
In addition to supporting AUTHCHK *FILES with implicit reference to the AUTHCHK
*ARCHIVE certificate validation, separate and distinct file signatory validation can be
performed outside of the configured Sponsor Distribution Package. However, this
operation is allowed only for files in a sponsor-provided data archive that have
signatures for which certificates are not included in the Sponsor Distribution
Package.

Public-key certificate files supporting file signature authentication can be supplied
through the full-featured Smartcrypt for IBM i CER certificate types in the local
certificate store.

Write Mode (ZIP) Processing
• With Write mode, a sponsor-authorized partner can generate a ZIP

archive for the sponsor. Data files placed in the created archive are
encrypted for a sponsor-designated set of certificate-based recipients. The
following special features are provided by Write mode:

• Unless otherwise specified, a minimum encryption method of AES128 is
set for newly encrypted files.

• All recipients defined in the sponsor-defined recipient package (as
configured from the Sponsor Distribution Package) are included in the
encryption request.

• Recipients identified in the sponsor-defined recipient package are subject
to the Smartcrypt ENCRYPOL policy settings in the certificate store
configuration. Individual recipients not passing the designated policy
attributes are eliminated from encryption processing.

• The certificate authority trust chain from the installed and configured
Sponsor Distribution Package is automatically honored for the designated
recipients even if the trusted root certificate is not installed in the local
certificate store ROOT. A trusted root is included in the Sponsor
Distribution Package.

 239

• When a sponsor-created ZIP archive is used as input to create a new
target archive, the same features in effect for Read mode are activated for
the input archive. In particular, a signed archive is validated with
AUTHCHK.

• When a sponsor-source ZIP archive is used as input to create a new target
archive, files copied from the original archive are retained in their original
form.

• Newly created archives may be viewed in accordance with Smartcrypt
functionality.

Restrictions
The following features are not available or have limitations for SecureZIP Partner
for IBM i:

• GZIP output is not available.

• Self-extracting archives cannot be created.

• An encryption method for supported recipient-based encryption must be
used (“Standard” is not supported).

• Passphrase-based encryption for new archives is not available.

• Encryption is only permitted for sponsor-provided keys.

• All archive creation actions require a qualified response recipient
configuration as provided by the Sponsor Distribution Package.

• Directory Integration with LDAP access to private-key certificates for
decryption and related command settings is not available.

• An archive can be created and encrypted only for recipients associated
with a single sponsor: an ENTPREC request must target a configured
sponsor, and an archive cannot be created for multiple sponsors. Note,
however, that multiple public-key certificates can be included by a given
sponsor in one Sponsor Distribution Package. This implementation rules
out the use of DB: and LDAP: request formats for the ENTPREC command.

• An output archive with FNE(*YES) can be created in accordance with the
qualified sponsor recipient keys. However, because Write mode can create
and encrypt archives only for a sponsor, a partner cannot update a file-
name-encrypted archive from a sponsor for the partner.

Encryption Certificate Selection
ENTPREC public-key/certificate selection is predefined by the Sponsor Distribution
Package. The Smartcrypt for IBM i local certificate store is extended to support
sponsor-provided encryption keys with a lookup type of *SPONSOR. The Write mode
ENTPREC command is limited to access only those public-keys supplied in the
SecureZIP Partner Sponsor Distribution Package.

Sponsor encryption is accomplished by including the ENTPREC((*SPONSOR x))
parameters, where x is the sponsor ID number or sponsor recipient file (R000000x).

One ENTPREC((*SPONSOR x)) is required encrypt the files for the sponsor.

240

Example: Encrypting files into an archive for sponsor 0:
 PKZIP ARCHIVE('PKW14053L/PLIVPZIP(NEWTESTZ)')
 FILES(&FILES1)
 ADVCRYPT(AES256)
 ENTPREC((*SPONSOR 0))

Sample Results:

Scanning files in *DB for match ...
Digital Certificate Request List:Encryption Recipients
Rqrd Pub *SPONSOR -
/yourpath/PKWARE/PLstore/Sponsor/RECIP/r0000000.p7
Encryption Recipients List-----------1 processed:
CN=PKWARE PartnerLink TEST Encryption Certificate
EMail=PKWAREPartnerLinkCA@pkware.com
Found 1 matching files
Compressing PKW14053L/TMPTEST(READMETXT) in TEXT mode
Add PKW14053.L/TMPTEST/READMETX.T -- Deflating (69%) encrypt(AES 256Key)
Smartcrypt Compressed 1 files in Archive PKW14053L/PLIVPZIP(NEWTESTZ)
Smartcrypt Completed Successfully

 241

15 1Step2Tape Archive Tape Processing

With the 1Step2Tape feature, Smartcrypti can create and read archive files directly
to and from tape by using a tape device file (file type *TAPF). Writing the archive
files directly to tape eliminates the need to provide disk space for temporary archive
files that must then be copied to tape.

The tape archiving process has three steps:

1. Define the tape attributes in a tape device file (Note two tape devices
described below are distributed with products).

2. Specify the tape device file as the ARCHIVE() parameter with the
TYPARCHFL(*TAP) option.

3. Code the options for the parameter PKOVRTAPF() or PKOVRTAPI().

To make an IBM i PKZIP tape archive more manageable to view or extract, PKZIP will
build a shadow archive directory file containing directory control information. This is
a small tape file with the next sequence number after the newly created archive tape
file’s sequence number. The file will have a standard tape label of “PKZCDFxxxx”
where xxxx is the tape file’s sequence number. The shadow file allows processing
by tape positioning, instead of reading an entire tape archive file to obtain directory
control information normally located at the end of an archive. This shadow archive
directory file is only valid running IBM i PKUNZIP. The archive file that is created on
tape is a complete standard archive which is compatible with all other PKWARE
products.

Creating archive files to tape
The PKZIP command parameter PKOVRTAPF has six options that can override the
current tape device file when TYPARCHFL(*TAP) is set. The PKOVRTAPF parameter
defaults to the current settings of the *TAPF and to create a shadow directory file.
The PKOVRTAPF options are:

New Archive Tape Overrides:
 Tape Device *TAPF _ Tape Device
 Tape File Label *TAPF Tape Header
 Tape Sequence Nbr *TAPF 1-16777216, *TAPF, *END
 File expiration date *TAPF Date, *NONE, *PERM, *TAPF
 End Of Tape Option *TAPF *TAPF, *REWIND, *UNLOAD...

Shadow Dir File *CSDF *CSDF, *NO

242

Notes and Suggestions for Writing Archives to Tape
• We recommend you always create the shadow directory file for unzip

efficiency.

• To reduce run time, pre-initialize the tapes by defining the tape drive, new
volume name and the tape density. For example:

 INZTAP DEV(TAP01) NEWVOL(PKZIP1) DENSITY(*QIC525)

• The tape device file should be tailored for your environment.

• If there are files already on the tape, the open may take much longer
depending on the TAPF sequence number (SEQNBR).

• If SEQNBR is set to *END, Smartcrypti adds the new archive as the last
file on the tape. If SEQNBR is set to 1, Smartcrypti starts at the
beginning and overwrites any files currently on the tape. The checking of
current files on a tape is done using the normal IBM file checking based on
expiration date, label processing, and so on.

• If you are writing several archives to the same tape, it will run faster if
you use the *LEAVE option for the end-of-tape option.

• If you have a tape drive and tape format that supports Optimum Block,
make sure to configure the tape device file to utilize it.

Usage Notes:

Archives written directly to tape by Smartcrypti use the ZIP64 data descriptor
records format. This ZIP file structure is documented in the ZIP File Format
Specification (APPNOTE) published by PKWARE. Not all ZIP-compatible products
support data descriptors or ZIP64, and you may experience problems reading these
archives if you need to process them for any reason outside of your IBM i
environment. We recommend using only PKWARE, Inc. products to ensure the
successful recovery of data from your tape archives.

Smartcrypti issues a tape override for the tape device file at the activation group
scope level. If other overrides were made with OVRTAPF previously or at the job
level for DEV(), LABEL(), SEQNBR(), EXPDATE(), and ENDOPT() parameters, then
Smartcrypti will not be able to supersede the prior override.

For example, if an earlier override was OVRTAPF FILE(PKTAPEO1) LABEL('My
Header'), and the PKZIP PKOVRTAPF contained (*TAPF 'ARCHIVE_TEST24' *END
*TAPF *TAPF), then the label written to the tape will be 'My Header'.

Reading archive files from tape:
PKUNZIP tape override commands may be specified prior to or during the PKUNZIP
run with the PKOVRTAPI parameter. PKOVRTAPI includes four options to override
the current tape device file when TYPARCHFL(*TAP) is set. The PKOVRTAPI
parameter defaults to the current settings of the *TAPF. The PKOVRTAPI options are:

Input Archive Tape Overrides:
 Tape Device *TAPF Tape Device
 Tape File Label *TAPF
 Tape Sequence Nbr *TAPF 1-16777216, *TAPF, *NEXT
 End Of Tape Option *TAPF *TAPF, *REWIND, *UNLOAD...

 243

Notes and Suggestions for Reading Archives from Tape
• If the tape contains shadow directory files, always reference these files to

avoid reading the whole archive for processing.

• If the archive consists of multiple tape volumes and you have a shadow
directory file on the last volume: Mount the last volume and reference the
shadow directory file sequence number. The system will then ask to
mount the first file to process the actual archive file for extraction.

• If you are reading several archives from the same tape, it will run faster if
you use the *LEAVE option.

Usage Notes:

Smartcrypti issues a tape override for the tape device file at the activation group
scope level. If other overrides were made with OVRTAPF previously or at the job
level for DEV(), LABEL(), SEQNBR(), and ENDOPT() parameters, then Smartcrypti
will not be able to supersede the prior override.

For example, if an earlier override was OVRTAPF FILE(PKTAPEI1) LABEL('My
Header'), and the PKZIP PKOVRTAPI contained (*TAPF 'ARCHIVE_TEST24' *NEXT
*TAPF), then the label read from the tape will be 'My Header'.

During PKUNZIP processing, the tape will be positioned at the end of the archive to
extract data about the files contained in the archive. To extract or test the files in the
archive, PKUNZIP will close the tape file and reopen the archive file to position itself
for the processing of each file that is selected. This initialization process may take
some time, so PKUNZIP will issue the message AQZ0556 “Input Archive Tape
Repositioning”, after directory data collection has been completed. After the tape
has been repositioned, PKUNZIP continues to extract the data as usual.

Setting Up or Changing a Tape Device File for PKZIP or PKUNZIP
To write or read an archive directly to/from tape, the parameter for ARCHIVE()
should be a tape device file that defines the tape input/output attributes for the
archive. Do not confuse tape device files with data files on the tape volumes. For
processing volumes which contain data files, the tape device files provide a link
between the application program and the tape device.

Before using tape archives with this product, first tailor the tape device files for the
environment.

Included as part of the distribution library are the tape device files named PKTAPEO1
for PKZIP output and PKTAPEI1 for PKUNZIP input. You can view the contents by
doing a CHGTAPF pkziplib/PKTAPEx1 and pressing the F4 key. You can tailor these
files for your environment with the CHGTAPF command, or you can create and use
any other TAPF object that you want. For more information, refer to the CRTTAPF,
CHGTAPF, OVRTAPF, and DLTTAPF commands in the IBM CL programmers guide, or
reference the IBM site for IBM i: http://publib.boulder.ibm.com/eserver/ibmi.html

Output Tape Device File for PKZIP
In the PKTAPEO1 tape device file, the LABEL parameter specifies the data file
identifier or tape header label of the archive file on tape. The PKZIP command

244

provides overrides to the DEV, SEQNBR, LABEL, EXPDATE, and the ENDOPT
parameters.

The distributed PKWARE TAPF object was created with the following command:

 CRTTAPF FILE(pkziplib/PKTAPEO1) DEV(TAP01) VOL(*NONE)
 REELS(*SL) SEQNBR(*END) LABEL('PKZIP.ARCHIVE')
 FILETYPE(*DATA)
 TEXT('Smartcrypt Archive Tape File')

BLKLEN(262112)
 RCDBLKFMT(*FB) CODE(*EBCDIC)
 EXPDATE(*PERM) ENDOPT(*REWIND)

The contents of the distributed tape device file are shown below:

 Change Tape File (CHGTAPF)

File FILE PKTAPEO1
 Library PKZIPLIB
Tape device DEV TAP01
 + for more values
Volume identifier VOL *NONE
 + for more values
Tape reels specifications: REELS
 Label processing type *SL
 Number of reels 1
Sequence number SEQNBR *END
Tape label LABEL 'PKZIP.ARCHIVE '
Text 'description' TEXT 'Smartcrypt Archive Tape File'
 Additional Parameters

Record length RCDLEN *CALC
Block length BLKLEN 262112
Buffer offset BUFOFSET 0
Record block format RCDBLKFMT *FB
Extend: EXTEND
 Extend file *NO
 Check file
Tape density DENSITY *DEVTYPE
Data compaction COMPACT *DEVD
Code CODE *EBCDIC
Creation date CRTDATE *NONE
File expiration date EXPDATE *PERM
End of tape option ENDOPT *REWIND
User label program USRLBLPGM *NONE
 Library
User specified DBCS data IGCDTA *NO
Maximum file wait time WAITFILE *IMMED
Share open data path SHARE *NO

Tape Device Requirements for Writing Archives
• The TAPF device file type must be data or FILETYPE(*DATA) or the archive

data will become corrupted

• The tape device file record length (RCDLEN) MUST not exceed 32,764 (the
default for PKZIP)

• If the tape device file block length (BLKLEN) is changed, it must be
changed by a multiple of 32,764 in the CHGTAPF or CRTTAPF command.
On the OVRTAPF command, the BLKLEN must be a multiple of the RCDLEN
if the RCDLEN is also overridden.

 245

• The record block format must be fixed block or RCDBLKFMT(*FB)

• The record labels processing must be standard labels or REELS(*SL)

• IMPORTANT: If your tape drive or tape format does not support
optimum blocks then change the BLKLEN() to *CALC.

• Tape Compression/Compaction: When creating an archive to tape in a
non-store mode, overall performance will improve by turning off the tape
compaction feature. After compression and/or encryption, data is usually
so random that it cannot be further compacted, but the system will test
each buffer anyway and sometimes will try to compact. Also, most tape
system compaction inserts bytes even when not able to compact.

To turn off tape compaction, you can either change the tape device file for
COMPACT(*NO) or issue a tape override prior to PKZIP. For example:

• OVRTAPF FILE(PKTAPEO2) COMPACT(*NO)

• Support for Optimum Blocks: If you have a tape drive and tape format
that supports Optimum Block, you can define a new tape device file to
improve performance.

First determine the maximum optimum block size for your tape device and
density. Then set up a tape device file to define the BLKLEN (not to exceed
the tape drive maximum size). Define the BLKLEN as a multiple of the default
record length of 32,764. For example, if the tape drive model is a SLR60
drive, and the format of the tape is *SLR60, then Optimum Block is supported
with a maximum optimum block size of 256K (262,144 bytes). Overall
performance improves with a large block size because fewer tape writes are
necessary.

The following examples use a block size of 262,112 (a multiple of the 32,764
record size):

 CRTTAPF FILE(pkziplib/PKTAPEO2) DEV(TAPxx) VOL(*NONE)
 REELS(*SL) SEQNBR(*END) LABEL('PKZIP.ARCHIVE')
 FILETYPE(*DATA)
 BLKLEN(262112) RCDBLKFMT(*FB)
 TEXT('Smartcrypt Archive Tape File Optimum Block')
 CODE(*EBCDIC) EXPDATE(*PERM) ENDOPT(*REWIND)

• To use a smaller record size than the default of 32,764, you must issue an
OVRTAPF command prior to each PKZIP run. Changing the RECLEN in the
tape device file does not change record size.

The following example sets the record size to 8192 and the block size to a
multiple of this. The block size must be a multiple of the record length.

 OVRTAPF FILE(PKTAPEO2) RCDLEN(8192) BLKLEN(262144)
 RCDBLKFMT(*FB)

Input Tape Device File for PKUNZIP
In the PKTAPEI1 tape device file, the LABEL parameter specifies the data file
identifier or tape header label of the archive file on tape. The PKUNZIP command
provides overrides to the DEV, SEQNBR, LABEL, and the ENDOPT parameters.

The distributed PKWARE TAPF object was created with the following command:

246

CRTTAPF FILE(pkziplib/PKTAPEI1) DEV(TAP01)
 VOL(*NONE) REELS(*SL) SEQNBR(*NEXT) LABEL(*NONE)
 FILETYPE(*DATA) TEXT('Smartcrypt Tape In ArchiveFile')
 RCDBLKFMT(*FB) CODE(*EBCDIC) EXPDATE(*NONE) ENDOPT(*REWIND))

The contents of the distributed tape device file PKTAPEI1 are:

 Change Tape File (CHGTAPF)
File > PKTAPEI1 Name
 Library *LIBL Name, *LIBL, *CURLIB
Tape device TAP01 Name, *SAME, *NONE
 + for more values
Volume identifier *NONE Character value, *SAME, *NONE
 + for more values
Tape reels specifications:
 Label processing type *SL *SAME, *SL, *NL, *NS, *BLP...
 Number of reels 1 1-255, *SAME
Sequence number *NEXT 1-16777215, *SAME, *END...
Tape label '*NONE '
Text 'description' 'Smartcrypt for IBM i *TAPF Object'
Record length *CALC Number, *SAME, *CALC
Block length *CALC 1-524288, *SAME, *CALC
Buffer offset 0 Number, *SAME, *BLKDSC
Record block format *FB *SAME, *FB, *F, *V, *VB...
Extend:
 Extend file *NO *SAME, *NO, *YES
 Check file *NOCHECK, *CHECK
Tape density *DEVTYPE *SAME, *DEVTYPE, *FMT3480...
Data compaction *DEVD *SAME, *DEVD, *NO
Code *EBCDIC *SAME, *EBCDIC, *ASCII
Creation date *NONE Date, *SAME, *NONE
File expiration date *NONE Date, *SAME, *NONE, *PERM
End of tape option *REWIND *SAME, *REWIND, *LEAVE...
User label program *NONE Name, *SAME, *NONE
 Library Name, *LIBL, *CURLIB
Maximum file wait time *IMMED Seconds, *SAME, *IMMED, *CLS
Share open data path *NO *SAME, *NO, *YES

Tape Device Requirements for Reading Archives
• The TAPF device file type must be data or FILETYPE(*DATA) or the archive

data will become corrupted

• The tape device file record length (RCDLEN) if used MUST be *CALC.

• The LABEL() should be code *NONE. The label is best controlled with
PKOVRTAPI().

• Change the SEQNBR() to *NEXT to avoid always reading file 1.

Sample - Creating an Archive Directly to Tape
The following examples show the steps to create two archives directly to tape along
with directory shadow files. Most tape processing will normally be performed with a
CL program, but it can also be done interactively, as in these examples. For another
CLP sample, refer to member PKSAMP07 in the QCLSAMP source file distributed with
Smartcrypti.

 247

First, make sure the tape has been properly initialized with standard labels. This can
be done using the INZTAP command with appropriate parameters for your
environment.

 INZTAP DEV(TAP01) NEWVOL(PKZIP1)

For this example, we want the archive to be the first sequence file on the tape. We
want the label to be ARCHIVE_TEST01 and an expiration date of 11/08/2013:

 PKZIP ARCHIVE('PKW14053S/PKTAPEO1') FILES('testlib/myfile')
 TYPARCHFL(*TAP)
 PKOVRTAPF(*TAPF 'ARCHIVE_TEST01' 1 '11/08/2013' *TAPF *CSDF)

Archive File System *TAP active
Scanning files in *DB for match ...
Tape Archive PKW14053S/PKTAPEO1 being created
Compressing TESTLIB/MYFILE(MYMBR) in TEXT mode
Add TESTLIB/MYFILE/MYMBR -- Deflating (67%)
Archive <ARCHIVE_TEST01> Seq(1) created on Tape Volume(PKZIP1).
Creating Tape Shadow Archive Directory File.
Tape Shadow Directory File <PKZCDF0002> Seq(2) created on Tape Volume(PKZIP1).
Smartcrypt Compressed 1 files in Archive PKW14053S/PKTAPEO1
Smartcrypt Completed Successfully

The next example creates an archive at the end of the tape. We give the header the
name ARCHIVE_TEST02. By using the *END command, this archive will be the next
sequence number. Since PKZIP created a shadow directory file in the first example,
this will end up being tape file sequence number 3. This time we specify
VERBOSE(*MAX) to show the overrides processed:

 PKZIP ARCHIVE('PKW14053S/PKTAPEO1') FILES('testlib/myfil*')
 TYPARCHFL(*TAP)
 PKOVRTAPF(*TAPF 'ARCHIVE_TEST02' *END *TAPF *REWIND)
 VERBOSE(*MAX)

Archive File System *TAP active
Scanning files in *DB for match ...
Archive override <OVRTAPF FILE(PKTAPEO1) TOFILE(PKW14053S/PKTAPEO1)
LABEL('ARCHIVE_TEST02') SEQNBR(*END) ENDOPT(*REWIND) OVRSCOPE(*ACTGRPDFN)>
Include parameters supplied 1
Found 9 matching files
Tape Archive PKW14053S/PKTAPEO1 being created
Compressing TESTLIB/MYFILE(MYMBR) in TEXT mode
Stats: (in=55271) (out=18146) (Encrypt=0)
Add TESTLIB/MYFILE/MYMBR -- Deflating (67%)
Compressing TESTLIB/MYFILEGER(MYMBR) in TEXT mode
Stats: (in=48) (out=43) (Encrypt=0)
Add TESTLIB/MYFILEGE.R/MYMBR -- Deflating (10%)
Compressing TESTLIB/MYFILETEXT(MYMBR) in TEXT mode
.....
.....
.....
Archive <ARCHIVE_TEST02> Seq(3) created on Tape Volume(PKZIP1).
Archive override <OVRTAPF FILE(PKTAPEO1) TOFILE(PKW14053S/PKTAPEO1)
LABEL('PKZCDF0004') SEQNBR(4) ENDOPT(*REWIND) OVRSCOPE(*ACTGRPDFN)>
Creating Tape Shadow Archive Directory File.
Tape Shadow Directory File <PKZCDF0004> Seq(4) created on Tape Volume(PKZIP1).
Smartcrypt Compressed 9 files in Archive PKW14053S/PKTAPEO1
Smartcrypt Completed Successfully

The following command lists the files on the tape after several runs of PKZIP.

 DSPTAP DEV(TAP01) OUTPUT(*PRINT)

248

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
5722SS1 V5R3M0 040528 TAPE VOLUME INFORMATION PKZIP1
 Device : TAP01 Volume : PKZIP1
 Owner ID : Density : *SLR60
 Type : *SL Code : *EBCDIC
 Record
 File Block Recg Record Block File Date
Data File Label Sequence Format Tech Length Length Length Created
 Expiration
 Date

 ARCHIVE_TEST01 0000000001 *FB P 32764 262112 0000000001 08/04/09
11/08/09
 PKZCDF0002 0000000002 *FB P 32764 262112 0000000001 08/04/09
11/08/09
 ARCHIVE_TEST02 0000000003 *FB P 32764 262112 0000000001 08/04/09
*NONE
 PKZCDF0004 0000000004 *FB P 32764 262112 0000000001 08/04/09
*NONE
 * * * * * E N D O F L I S T I N G * * * * *

Note that the shadow directory file took on the same expiration date as the archive.

Sample - Extracting Files from an Archive Written Directly from
Tape
The following samples show the steps to read archives directly from tape utilizing the
new PKOVRTAPI parameter.

First sample will test the files in the archive in tape file number 2 (the shadow
directory file for archive file sequence # 1) using the PKOVRTAPI parameter to
specify only the sequence number 2 with no label checking:

 PKUNZIP ARCHIVE('PKW14053S/PKTAPEI1')
 TYPARCHFL(*TAP) VERBOSE(*ALL) TYPE(*TEST)
 PKOVRTAPI(*TAPF *NONE 2 *TAPF)

Archive File System *TAP active
Archive override <OVRTAPF FILE(PKTAPEI1) TOFILE(PKW14053S/PKTAPEI1) LABEL('*NONE')
SEQNBR(2) OVRSCOPE(*ACTGRPDFN)>
Opening Input Tape Archive PKW14053S/PKTAPEI1
Processing Directory for <ARCHIVE_TEST01> Seq(1) Volume(PKZIP1) Archive.
Input Archive Tape Repositioning for Processing of First Local Directory.
Searching Archive PKW14053S/PKTAPEI1 for files to extract
Testing: TESTLIB/MYFILE/MYMBR
TESTLIB/MYFILE/MYMBR tested OK
Archive <ARCHIVE_TEST01> File Seq(1) Processed tape device file
PKW14053S/PKTAPEI1.
SecureUNZIP Completed Successfully

Note the message: Processing Directory for <ARCHIVE_TEST01> Seq(1)
Volume(PKZIP1) Archive. This is the result of referencing the shadow directory file
to access the archive file.

Second sample will view the contents of the third tape archive file using the
PKOVRTAPI parameter to specify both the tape label ARCHIVE_TEST02 and the
sequence number 3. This sample is not reading the shadow directory file:

 PKUNZIP ARCHIVE('PKW14053S/PKTAPEI1')
 TYPARCHFL(*TAP) VERBOSE(*ALL) TYPE(*VIEW)
 PKOVRTAPI(*TAPF ' ARCHIVE_TEST02' 3 *TAPF)

 249

Archive File System *TAP active
Archive override <OVRTAPF FILE(PKTAPEI1) TOFILE(PKW14053S/PKTAPEI1)
LABEL('ARCHIVE_TEST02') SEQNBR(3) OVRSCOPE(*ACTGRPDFN)>
Opening Input Tape Archive PKW14053S/PKTAPEI1
Archive: PKW14053S/PKTAPEI1, 0 bytes, 9 files, 1 Segment
 Length Method Size Ratio Date Time CRC-32 Name
 -------- ------ ------- ----- ---- ---- ------ ----
 55271 Defl:S 18146 67% 03-05-09 14:48 13abbd41 TESTLIB/MYFILE/MYMBR
 48 Defl:S 43 10% 10-26-05 07:48 1b277b62 TESTLIB/MYFILEGE.R/MYMBR
 259 Defl:S 210 19% 10-26-05 07:48 b5dbf80c TESTLIB/MYFILETE.XT/MYMBR
 55271 Defl:S 18146 67% 08-17-06 11:08 13abbd41 TESTLIB/MYFILE1/MYFILE
 55271 Defl:S 18146 67% 08-23-06 12:19 13abbd41 TESTLIB/MYFILE2/MYFILE1
 55271 Defl:S 18146 67% 08-23-06 12:19 13abbd41 TESTLIB/MYFILE2/MYFILE2
 48 Defl:S 43 10% 10-26-05 07:48 1b277b62 TESTLIB/MYFILE27.3/MYMBR
 55271 Defl:S 18146 67% 08-17-06 11:08 13abbd41 TESTLIB/MYFILE3/MYFILE
 55271 Defl:S 18146 67% 08-17-06 11:08 13abbd41 TESTLIB/MYFILE4/MYFILE
 -------- ------- ---- -------
 331981 109172 67% 9 files
Archive <ARCHIVE_TEST02> File Seq(3) Processed tape device file
PKW14053S/PKTAPEI1.
SecureUNZIP extracted 0 files
SecureUNZIP Completed Successfully

Third sample will extract the files in the third tape archive file using the PKOVRTAPI
parameter to specify the tape device “TAP01”, the sequence number 4 (for the
shadow directory file) and the end option of *REWIND:

 PKUNZIP ARCHIVE('PKW14053S/PKTAPEI1')
 TYPARCHFL(*TAP) VERBOSE(*ALL) TYPE(*EXTRACT)
 PKOVRTAPI(TAP01 *NONE 4 *REWIND)

Archive File System *TAP active
Archive override <OVRTAPF FILE(PKTAPEI1) TOFILE(PKW11053S/PKTAPEI1) DEV(TAP01)
LABEL('*NONE') SEQNBR(4) ENDOPT(*REWIND) OVRSCOPE(*ACTGRPDFN)>
Opening Input Tape Archive PKW11053S/PKTAPEI1
Processing Directory for <ARCHIVE_TEST02> Seq(3) Volume(PKZIP1) Archive.
Input Archive Tape Repositioning for Processing of First Local Directory.
Searching Archive PKW11053S/PKTAPEI1 for files to extract
Extracting file TESTLIB/MYFILE/MYMBR
Extracting file TESTLIB/MYFILEGE.R/MYMBR
Extracting file TESTLIB/MYFILETE.XT/MYMBR
Extracting file TESTLIB/MYFILE1/MYFILE
Extracting file TESTLIB/MYFILE2/MYFILE1
Extracting file TESTLIB/MYFILE2/MYFILE2
Extracting file TESTLIB/MYFILE27.3/MYMBR
Extracting file TESTLIB/MYFILE3/MYFILE
Extracting file TESTLIB/MYFILE4/MYFILE
Archive <ARCHIVE_TEST02> File Seq(3) Processed tape device file
PKW11053S/PKTAPEI1.
SecureUNZIP extracted 9 files
Smartcrypt Completed Successfully

How to Copy a Tape Archive to a Disk File
If a need arises to copy a tape archive to disk for any reason, we suggest following
these steps.

1. Identify the archive. Make sure it is the archive file and not the shadow
directory file. If needed use DSPTAP to identify the correct tape file.

2. Create a file in a library where the file from tape will be copied. The record
length must be the same as the record length on the tape file.

 CRTPF FILE(MYLIB/TEMPZIP) RCDLEN(32764) FILETYPE(*DATA)
 MBR(*NONE) MAXMBRS(*NOMAX)

250

3. Run the CPYFRMTAP command to copy the tape file to disk.

 OVRTAPF FILE(PKTAPEO1) TOFILE(*LIBL/PKTAPEO1) DEV(TAP01)
 SEQNBR(3) LABEL(ARCHIVE_TEST02)

 CPYFRMTAP FROMFILE(*LIBL/PKTAPEO1) TOFILE(MYLIB/TEMPZIP)
 TOMBR(MYNBR1) FROMENDOPT(*REWIND) MBROPT(*ADD)

File PKTAPEO1 overridden to PKTAPEO1 in PKZIPLIB.
RCDLEN, BLKLEN, RCDBLKFMT, BUFOFSET values assumed.
Member or label overridden to ARCHIVE_TEST01.
Member MYNBR1 added to file TEMPZIP in ATEST.
47 records copied from member ARCHIVE_TEST01.

4. At this point, the copied disk archive could be processed with PKUNZIP/PKZIP.

 PKUNZIP ARCHIVE('MYLIB/TEMPZIP/MYNBR1') TYPE(*VIEW)
Archive: MYLIB/TEMPZIP(MYNBR1), 131056 bytes, 9 files, 1 Segment
 Length Method Size Ratio Date Time CRC-32 Name
 -------- ------ ------- ----- ---- ---- ------ ----
 55271 Defl:S 18146 67% 03-05-09 14:48 13abbd41 TESTLIB/MYFILE/MYMBR
 48 Defl:S 43 10% 10-26-05 07:48 1b277b62 TESTLIB/MYFILEGE.R/MYMBR
 259 Defl:S 210 19% 10-26-05 07:48 b5dbf80c TESTLIB/MYFILETE.XT/MYMBR
 55271 Defl:S 18146 67% 08-17-06 11:08 13abbd41 TESTLIB/MYFILE1/MYFILE
 55271 Defl:S 18146 67% 08-23-06 12:19 13abbd41 TESTLIB/MYFILE2/MYFILE1
 55271 Defl:S 18146 67% 08-23-06 12:19 13abbd41 TESTLIB/MYFILE2/MYFILE2
 48 Defl:S 43 10% 10-26-05 07:48 1b277b62 TESTLIB/MYFILE27.3/MYMBR
 55271 Defl:S 18146 67% 08-17-06 11:08 13abbd41 TESTLIB/MYFILE3/MYFILE
 55271 Defl:S 18146 67% 08-17-06 11:08 13abbd41 TESTLIB/MYFILE4/MYFILE
 -------- ------- ---- -------
 331981 109172 67% 9 files
SecureUNZIP extracted 0 files
SecureUNZIP Completed Successfully

 251

A Performance Considerations

This appendix lists a few performance considerations when running Smartcrypti.
Most performance related issues can be controlled by the PKZIP/PKUNZIP
parameters. However, it should be noted that PKZIP data compression is CPU
intensive by its very nature, and that PKZIP/PKUNZIP parameters can only help to a
limited degree. Therefore, it should be expected that a reasonable amount of CPU
resources will be needed for such operations.

Interactive Performance
When compressing large size files, PKZIP will sometimes use as much CPU resources
as the system will allow. With this in mind, processing very large files may perform
best as a submitted job. However, some IBM i environments have constraints on
running interactive jobs. If those interactive jobs run for a long time and use a high
amount of CPU resources, the system will slow down and may issue the message
CPI1479 "Interactive activity approaching capacity of installed feature." In this case,
review the details of this message. This usually means that the interactive systems
are using more resources than the IBM i was configured to use.

Compression Type Performance
Selecting a compression method is one way to get the smallest compressed file with
the relationship to the CPU usage and run times. Sometimes, to get the best results,
you may have to run several tests with the data to balance the compression ratio to
the length of the run time. Running with *MAX will usually get the best compression
ratio but will also run the longest. In most of our test cases, *MAX would run 30%-
40% longer than *NORMAL and might only gain less than 1% better ratio. This is
why we recommend using SUPERFAST (the default) unless your testing implies
otherwise.

To minimize the overhead needed to ZIP, the best thing (and the easiest) is to select
a compression method other than *MAX. PKZIP’s default compression method is
SUPERFAST.

When using the compression method of Maximum, you are only compressing the
data by another 1-8% over a job that might use the SUPERFAST compression
method. The archive file size change is minimal. However, the time difference

252

between a maximum and a SUPERFAST job can be measured in hours if the file is big
enough!

You may read more about the compression levels by prompting the Compression
Level parameter (F1).
Compression Level *SUPERFAST *FAST, *NORMAL, *MAX...

Data Type Selection
Getting the best performance from your IBM i machine with regards to a PKZIP job
can truly depend on the parameters you have selected for the job. In many cases,
the compressed size of a file depends on the type of data (Binary vs. Text), and the
compression type selected. Text will usually compress more since it has a higher
probability of repeated characters.

Knowing the target platform of the data will help you resolve how PKZIP is to treat
the data during the compression process. However, PKZIP treatment of data defaults
to *DETECT. *DETECT means that PKZIP will scan the data (up to 97% of the input
file) to determine whether the data that it is going to compress should be treated as
TEXT or BINARY. This can be an especially painful process if you are selecting large
files for compression. However, to get around the scanning overhead, if you know
you are sending the archive or ZIP file to a PC or to a UNIX machine, you know that
the data will need to be converted to TEXT (or ASCII). Therefore, you should select
file Types(*TEXT). If the data is targeted for another IBM i machine, then you should
select *BINARY. *DETECT should only be used when you do not know the nature of
the data.

You may read more about the data types by prompting the file Types parameter
(F1).
File Types *DETECT *DETECT *TEXT *BINARY

Archive Placement (IFS or in a Library)
For best performance, try to store the archives in the IFS. By placing the archive in
the IFS instead of in a library/file reduces the overall CPU usage and in some cases
can reduce the run times as much as 30%-40%.

It is recommended when using the ZIP process for large files that the ZIP archive be
stored in the IFS. This method provides the best performance and makes the most
efficient use of storage space for both ZIP archives and ZIP temporary files.

ZIP64 Processing Considerations
When processing very large files or high volumes of files, the processing
characteristics of PKZIP may vary depending on the phase of processing involved.
Some common processing phases and their run-time characteristics are:

• ZIP file selection: When selecting a very large number of files through
many directories and/or libraries, the initial selection requires IO time and
memory per file to analyze and manage each of the file’s properties. The
more files to select, the more memory and initial startup overhead. Each

 253

site will have to discover their practical limits based on their environments
and resources.

• Archive directory read processing: When updating an existing archive
that contains a very large number of files, time and memory again are
used to manage the archives and its directory. Or when using PKUNZIP to
view the files, the more files in the archive, the more memory that is
required and the more time that is involved when sorting the files in
archive properties before displaying or printing the contents.

• Archive updating: When updating a large archive with large file sizes,
there will be overhead to copy the files from the previous archive, before
adding or updating new files to the archive. For example, if you have a 10
GB archive with 5 files that are each compressed, down to 2 GB, overhead
will be required to copy the compressed files from the old archive to the
new archive. This is another reason for storing the archive in the IFS,
which can help reduce resources rather than storing the archive in a file in
a library.

• When compressing large size files, PKZIP will sometimes use as much CPU
as the system will allow. With this in mind, processing very large files may
perform best as a submitted job. Some IBM i systems have constraints on
running interactively, and if interactive jobs run a long time and use high
amounts of CPU resources, their system will start slowing down and may
issue the message CPI1479 "Interactive activity approaching capacity of
installed feature." In this case they should review the details of this
message, which usually means that their interactive systems are using
more resources than the IBM i was configured to use.

Encryption Performance
Archives using advanced encryption (AES) will be slightly larger (approximately 300
bytes per file in archive) than archives with no encryption. The increase in size will
be the same whether you use AES 128, AES 192, or AES 256.

Being the most secure encryption algorithm, AES 256 will also consume the most
CPU usage. AES 128 on average could use around 9% more CPU than running with
no encryption. AES 256 averages about 3.4% more usage when compared with AES
128 (or around 12.5% versus no encryption).

Extended Attributes Selections
The extended attributes naturally contribute some overhead to the archive but it is
minimal, unless you are compressing a database file in the QSYS library file system
with the parameter DBSERVICE(*YES). This size then depends on the definitions of
the database (fields, headings, etc.), but also is very important in rebuilding a DB2
database where it does not exist.

These extended attributes can be stored in two places, called the local header and
central header directories. SecureZIPi 8.2 and other current PKWARE products now
only use the extended attributes from the central directory. To help reduce the
archive overhead the parameter EXTRAFLD in Smartcrypti has been expanded to

254

select where you want to store the attributes. By using EXTRAFLD(*Central), you
reduce the size of each file in the archive by the size of the extended attributes.

 255

B CLP Samples

The following CLP samples can be found in the QCLSRC file of the distributed library.
They contain programming source code for your consideration. These samples have
not been thoroughly tested under all conditions. PKWARE, Inc, therefore, cannot
guarantee or imply reliability or functionality of these programs. The programs
contained herein are provided to you "AS IS".

PKSAMP01 – Override for Stdout and Stderr to an OUTQ
This sample demonstrates how to override the PKZIP and PKUNZIP program output,
and then redirect the output to an OUTQ. This also provides an example of using
mixed file systems, such as having the archive file in the IFS and selecting files from
the QSYS library file system.

PKSAMP02 – Compress all files in TESTLIB with PKZIP
This sample demonstrates using PKZIP in a CL passing the archive’s library, file, and
member as variables and then monitoring for errors from the PKZIP run.

PKSAMP03 – Capture Last SPLF in Job
This brief CLP sample demonstrates using PKZSPOOL to compress only the last spool
file written out by the current job to a PDF.

PKSAMP04 – SBMJOB to Capture all SPLF of Job
This sample performs several tasks that print reports, then submits a job at the end
of the job that will compress all spool files to PDF files (including the job log).

PKSAMP05 – Strong Encrypt Calling Password
This sample calls PKSAMP05A to obtain a password for a PKZIP and PKUNZIP
process.

256

PKSAMP05A – Password CL Store for PKSAMP06
This sample is called from PKZIP for IBM i CL that requires a password. The
parameter will determine which password to return to the caller PGM.

PKSAMP06 – Creating archives with 1Step2Tape Old
This sample will run two PKZIP commands with the archives being written directly to
the tape that is on the inputted tape device. This will destroy the contents on the
tape since the first archive will be written to file number 1 on the tape. These tape
archive files are created without creating the shadow directory files.

PKSAMP07 – 1Step2Tape with View/Test Tape Input Archive Files
This sample will run three PKZIP commands with the archives being written directly
to the tape that is on the inputted tape device. This will destroy the contents on the
tape, since the first archive will be written to file number 1 on the tape.

Next a series of PKUNZIP commands (*VIEW, *TEST) will be run to read the newly
created archives directly from tape.

PKSAMP08 – Run iPSRA to SAVLIB and Capture Resulting Spool
Files
This sample demonstrates the use of iPSRA, using the SAVLIB command. The
OUTPUT parameter is then used to print the resulting output. Finally, a PKZIP job is
submitted to add the printed spool file (in PDF format) from the SAVLIB command to
the current archive.

PKSAMP09 – Lib Encryption to Tape with Multi Steps
This sample specifies a library that will be saved, compressed, encrypted and stored
on tape.

PKSAMP10 – 1Step2Tape and iPSRA Multiple Libraries
This sample demonstrates how to save multiple libraries directly to tape utilizing
iPSRA and 1Step2Tape features. It simulates the SAVLIB command with multiple
libraries by writing each library’s saved archive directly to tape using the tape label
name as the library name. It also creates a LOG file for each saved library as the
member name. This file contains the contents of the save operation.

This sample can be used to simulate using a *NONSYS with a SAVLIB command.

This CL displays library type objects, with output going to a temporary file. The CL
then loops through the output file, performs a PKZIP with iPSRA options for each
selected library, and creates the archive directly to tape using the tape label for the
library name. Encryption could be added to make the save files secure.

 257

PKSAMP11 – Change Ownership of PKWARE Objects
This sample demonstrates how to change the OWNER of all PKWARE objects. Before
compiling, you will need to do DSPOBJD to establish the objects file QTEMP/PKOBJS.

258

C List Files

The list file capabilities provided in the PKZIP and PKUNZIP commands can be a
powerful tool for maintaining detailed selection criteria and to exclude files. PKZIP
and PKUNZIP commands also allow creating a list of files that are located in a
particular archive.

Creating List Files
Both PKZIP and PKUNZIP can create a text format file of file names that meet criteria
entered within the FILES and EXCLUDE parameters. In PKZIP, the output files
contain the names of all files in the IBM i OS format, depending on if the files are
from the QSYS file system or IFS. The PKUNZIP program will produce a list of names
in the format of the archive. To create an output list file, place the output file name
in the parameter CRTLIST(). The default value is CRTLIST(*NONE).

Note: List File data is stored in EBCDIC.

Depending on the value of the TYPLISTFL parameter, the output file can be put in
either the QSYS file system or IFS.

TYPLISTFL(*DB): When the file system is QSYS, the output file will create
a physical file (PF-DTA) with a record length of 132. For the file format in
CRTLIST, you can use any of the following formats: library/file,
library/file(member), file, or file(member). When a member is not entered,
the member name will be the same as the file name. You should use the
utility that your organization uses to edit data files.

TYPLISTFL(*IFS): When using the IFS, the output file will create a stream
file (*STMF object type). Most organization uses EDTF. For the file format in
CRTLIST, you can use any of the following formats: file, file.suffix, dir1/file,
dir1/dir2/../dirn/file, /dir1., etc. When the path does not start with ‘/’, then
the path starts in your current directory (relative path).

When creating a file manually, follow the creation attributes described above.

 259

Using List Files as Input
Both PKZIP and PKUNZIP programs can use list file parameters for both selections of
files (INCLFILE(‘file name’)) and/or the excluding of file (EXCLFILE(‘file name’). They
can also use an inlist file for the encryption recipient ENTPREC. The file name of
parameters depends on the setting of TYPLISTFL (*DB or *IFS) and should follow the
guidelines in “Creating List Files,” above.

When using PKZIP, the format of files in the list file should be in the format of the
IBM i files that will be processed. See the parameters FILES and EXCLUDE for
specifications.

When using PKUNZIP, the format of the files in the list file should be in the format of
the archive. See the parameters FILES and EXCLUDE for specifications.

PKUNZIP also has an option to create a list file in expanded mode, which will display
the date and time modified along with the file names. This is accomplished by having
a ‘>’ character being the in the first position of the CRTLIST parameter. See the two
examples below.

Create normal list file: PKUNZIP ARCHIVE('atest/V100/listf')
CRTLIST('atest/listfile(demo)')

 Edit File: ATEST/LISTFILE(DEMO)
 Record : 1 of 4 by 8 Column : 1 132 by 74
CMD+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
 ************Beginning of data**************
 TESTLIB/MYFILE/MYMBR
 TESTLIB/MYFILEGE.R/MYMBR
 TESTLIB/MYFILETE.XT/MYMBR
 TESTLIB/MYFILE27.3/MYMBR
 ************End of Data********************

Create an expanded list file: PKUNZIP ARCHIVE('atest/V100/listf')
CRTLIST('>atest/listfile(demo)')

 Edit File: ATEST/LISTFILE(DEMO)
 Record : 1 of 4 by 8 Column : 1 132 by 74
CMD+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
 ************Beginning of data**************
 DT(05-20-03 16:16) TESTLIB/MYFILE/MYMBR
 DT(02-14-03 16:44) TESTLIB/MYFILEGE.R/MYMBR
 DT(02-14-03 16:44) TESTLIB/MYFILETE.XT/MYMBR
 DT(02-14-03 16:44) TESTLIB/MYFILE27.3/MYMBR
 ************End of Data********************

260

D Translation Tables

Text files (such as program source code) are usually held within an archive using the
ASCII character set for compatibility with other versions of PKZIP. For these to be
usable on IBM i OS, they must be converted to the IBM EBCDIC character set.
Smartcrypti uses one of two possible internal translation tables, which should be
suitable for most customers. These translation table members are used by
parameters FTRAN and TRAN in both the PKZIP and PKUNZIP programs. Included (as
part of the distribution) are a series of override translation tables. Some users may
wish to define their own table.

The override translation tables included are stored as source members in file
PKZTABLES Smartcrypti resources tables. By referencing the members in
parameters TRAN and FTRAN, Smartcrypti will access the selected member in the
PKZTABLES file and parse them to an internal hexadecimal table for use in
translation.

The following translation tables are included:

Table
Name

Translation
from

Translation
to

Explanation

ISO9959_1 819 or

ISO9959_1

037 ASCII-819 <-> EBCDIC-037
Translation

(Same as using *ISO99591)

ASCIIISO EBCDIC ASCII - iso Translate Table

LATIN1 EBCDIC ASCII Latin Translate Table

NOOP NO-OP Translation Table Straight Hex

UKASCII EBCDIC UK ASCII Translate Table

UKASCIIE EBCDIC UK ASCII Translate Table-Euro

USASCII EBCDIC USA ASCII Translate Table

(Same as using *INTERNAL)

USASCIIE EBCDIC USA ASCII Translate Table-Euro

Standard Code Page Support with Tables
Three data translation tables are available to assist with one or more of the latest
standard EBCDIC text translation to ASCII. These tables were built to relate directly
to IBM code pages numbers.

 261

Code page tables available are:

Table
Name

ASCII

Code Page

EBCDIC

Code Page

Explanation

PKZ819037 819 037 ASCII-819 <-> EBCDIC-037
Translation

PKZ819273 819 273 ASCII-819 <-> EBCDIC-273
Translation German

PKZ819277 819 277 ASCII-819 <-> EBCDIC-277
Translation Den/Nor

PKZ819278 819 278 ASCII-819 <-> EBCDIC-278
Translation Fin/Swe

PKZ819280 819 280 ASCII-819 <-> EBCDIC-0280
Translation Italy

PKZ819284 819 284 ASCII-819 <-> EBCDIC-284
Translation Spanish

PKZ819297 819 297 ASCII-819 <-> EBCDIC-297
Translation French

PKZ819500 819 500 ASCII-819 <-> EBCDIC-500
Translation ISO8859-1

PKZ819871 819 871 ASCII-819 <-> EBCDIC-871
Translation Icelandic

PKZ850037 850 037 ASCII-850 <-> EBCDIC-037
Translation

PKZ850284 850 284 ASCII-850 <-> EBCDIC-284
Translation Spanish

International Code Page Support
Some data-interchange environments require specialized multi-language character
translation support. Smartcrypti provides tables for character based data translation
through translation tables that are also included in the PKZTABLES.

The tables for the following international code pages are provided in the
Smartcrypti PKZTABLES as members TRTxxyy (where xx = “from” and yy = “to”).

Language EBCDIC ASCII EURO/ASCII FROM TO EURO

German 273 850* 858 EB AA AI

Spanish 284 850 858 EJ AA AI

Portuguese 282 850 858 EI AA AI

Italian 280 850 858 EG AA AI

Danish 277 850 858 EE AA AI

Norwegian 277 850 858 EE AA AI

Swedish 278 850 858 EF AA AI

Finnish 278 850 858 EF AA AI

French 297 850 858 EM AA AI

* IBM-850 = IBM-4946

262

These members are provided "as is.” It is the responsibility of the user to ensure
that data translation mapping is in accordance with their business needs.

Translation Table Layout
There are two translation tables in PKZTABLES. The first table is a translation from
ASCII to EBCDIC. The second is EBCDIC to ASCII.

In each table there are 256 entries representing hex values from x’00’ thru x’FF’.

Each entry is represented as a 4-character field such as 0x00 and 0xFF.

On each line there must be 8 entries with each entry separated by a space. With 8
entries per line, there must be 32 lines of table entries for each table set,
representing the 256 translation values.

The tables have embedded comments to help in their documentation.

In the table example below, to translate an ASCII character A (hexadecimal x’41’ or
decimal value of ‘65’), go to entry 65 in the table (Line 8, entry 2) and find a
hexadecimal x’C1’ which is the EBCDIC A.

See “Example of PKZTABLES (USASCII) Translation Table.”

Note: Do not alter any other members found in the PKZTABLES file or Smartcrypti

may not function correctly.

Creating New Translation Table Members
Take the following steps to define your own translation table:

1. Copy one of the distributed members in PKZTABLES to a member name of
your choice.

2. Edit the new table using the IBM i OS Source Entry Utility (SEU).

3. Change the values with respect to the layout describe above, making sure not
to alter the overall table layout. If the overall layout is altered, Smartcrypti

may not work correctly.

4. Save the member and test your changes.

 263

Example of PKZTABLES (USASCII) Translation Table

/* PKZIP/400 Translate Table USASCII to EBCDIC */
/*00-07*/ 0x00 0x01 0x02 0x03 0x37 0x2D 0x2E 0x2F /*00-07*/
/*08-0f*/ 0x16 0x05 0x25 0x0B 0x0C 0x0D 0x0E 0x9F /*08-0f*/
/*10-17*/ 0x10 0x11 0x12 0x13 0xB6 0xB5 0x32 0x26 /*10-17*/
/*18-1f*/ 0x18 0x19 0x3F 0x27 0x1C 0x1D 0x1E 0x1F /*18-1f*/
/*20-27*/ 0x40 0x5A 0x7F 0x7B 0x5B 0x6C 0x50 0x7D /*20-27*/
/*28-2f*/ 0x4D 0x5D 0x5C 0x4E 0x6B 0x60 0x4B 0x61 /*28-2f*/
/*30-37*/ 0xF0 0xF1 0xF2 0xF3 0xF4 0xF5 0xF6 0xF7 /*30-37*/
/*38-3f*/ 0xF8 0xF9 0x7A 0x5E 0x4C 0x7E 0x6E 0x6F /*38-3f*/
/*40-47*/ 0x7C 0xC1 0xC2 0xC3 0xC4 0xC5 0xC6 0xC7 /*40-47*/
/*48-4f*/ 0xC8 0xC9 0xD1 0xD2 0xD3 0xD4 0xD5 0xD6 /*48-4f*/
/*50-57*/ 0xD7 0xD8 0xD9 0xE2 0xE3 0xE4 0xE5 0xE6 /*50-57*/
/*58-5f*/ 0xE7 0xE8 0xE9 0xBA 0xE0 0xBB 0xB0 0x6D /*58-5f*/
/*60-67*/ 0x79 0x81 0x82 0x83 0x84 0x85 0x86 0x87 /*60-67*/
/*68-6f*/ 0x88 0x89 0x91 0x92 0x93 0x94 0x95 0x96 /*68-6f*/
/*70-77*/ 0x97 0x98 0x99 0xA2 0xA3 0xA4 0xA5 0xA6 /*70-77*/
/*78-7f*/ 0xA7 0xA8 0xA9 0xC0 0x6A 0xD0 0xA1 0x07 /*78-7f*/
/*80-87*/ 0x68 0xDC 0x51 0x42 0x43 0x44 0x47 0x48 /*80-87*/
/*88-8f*/ 0x52 0x53 0x54 0x57 0x56 0x58 0x63 0x67 /*88-8f*/
/*90-97*/ 0x71 0x9C 0x9E 0xCB 0xCC 0xCD 0xDB 0xDD /*90-97*/
/*98-9f*/ 0xDF 0xEC 0xFC 0x4A 0xB1 0xB2 0x3E 0xB4 /*98-9f*/
/*a0-a7*/ 0x45 0x55 0xCE 0xDE 0x49 0x69 0x9A 0x9B /*a0-a7*/
/*a8-af*/ 0xAB 0x0F 0x5F 0xB8 0xB7 0xAA 0x8A 0x8B /*a8-af*/
/*b0-b7*/ 0x3C 0x3D 0x62 0x4F 0x64 0x65 0x66 0x20 /*b0-b7*/
/*b8-bf*/ 0x21 0x22 0x70 0x23 0x72 0x73 0x74 0xBE /*b8-bf*/
/*c0-c7*/ 0x76 0x77 0x78 0x80 0x24 0x15 0x8C 0x8D /*c0-c7*/
/*c8-cf*/ 0x8E 0x41 0x06 0x17 0x28 0x29 0x9D 0x2A /*c8-cf*/
/*d0-d7*/ 0x2B 0x2C 0x09 0x0A 0xAC 0xAD 0xAE 0xAF /*d0-d7*/
/*d8-df*/ 0x1B 0x30 0x31 0xFA 0x1A 0x33 0x34 0x35 /*d8-df*/
/*e0-e7*/ 0x36 0x59 0x08 0x38 0xBC 0x39 0xA0 0xBF /*e0-e7*/
/*e8-ef*/ 0xCA 0x3A 0xFE 0x3B 0x04 0xCF 0xDA 0x14 /*e8-ef*/
/*f0-f7*/ 0xE1 0x8F 0x46 0x75 0xFD 0xEB 0xEE 0xED /*f0-f7*/
/*f8-ff*/ 0x90 0xEF 0xB3 0xFB 0xB9 0xEA 0xBD 0xFF /*f8-ff*/

/* PKZIP/400 Translate Table EBCDIC to USASCII */
/*00-07*/ 0x00 0x01 0x02 0x03 0xEC 0x09 0xCA 0x7F /*00-07*/
/*08-0f*/ 0xE2 0xD2 0xD3 0x0B 0x0C 0x0D 0x0E 0xA9 /*08-0f*/
/*10-17*/ 0x10 0x11 0x12 0x13 0xEF 0xC5 0x08 0xCB /*10-17*/
/*18-1f*/ 0x18 0x19 0xDC 0xD8 0x1C 0x1D 0x1E 0x1F /*18-1f*/
/*20-27*/ 0xB7 0xB8 0xB9 0xBB 0xC4 0x0A 0x17 0x1B /*20-27*/
/*28-2f*/ 0xCC 0xCD 0xCF 0xD0 0xD1 0x05 0x06 0x07 /*28-2f*/
/*30-37*/ 0xD9 0xDA 0x16 0xDD 0xDE 0xDF 0xE0 0x04 /*30-37*/
/*38-3f*/ 0xE3 0xE5 0xE9 0xEB 0xB0 0xB1 0x9E 0x1A /*38-3f*/
/*40-47*/ 0x20 0xC9 0x83 0x84 0x85 0xA0 0xF2 0x86 /*40-47*/
/*48-4f*/ 0x87 0xA4 0x9B 0x2E 0x3C 0x28 0x2B 0xB3 /*48-4f*/
/*50-57*/ 0x26 0x82 0x88 0x89 0x8A 0xA1 0x8C 0x8B /*50-57*/
/*58-5f*/ 0x8D 0xE1 0x21 0x24 0x2A 0x29 0x3B 0xAA /*58-5f*/
/*60-67*/ 0x2D 0x2F 0xB2 0x8E 0xB4 0xB5 0xB6 0x8F /*60-67*/
/*68-6f*/ 0x80 0xA5 0x7C 0x2C 0x25 0x5F 0x3E 0x3F /*68-6f*/
/*70-77*/ 0xBA 0x90 0xBC 0xBD 0xBE 0xF3 0xC0 0xC1 /*70-77*/
/*78-7f*/ 0xC2 0x60 0x3A 0x23 0x40 0x27 0x3D 0x22 /*78-7f*/
/*80-87*/ 0xC3 0x61 0x62 0x63 0x64 0x65 0x66 0x67 /*80-87*/
/*88-8f*/ 0x68 0x69 0xAE 0xAF 0xC6 0xC7 0xC8 0xF1 /*88-8f*/
/*90-97*/ 0xF8 0x6A 0x6B 0x6C 0x6D 0x6E 0x6F 0x70 /*90-97*/
/*98-9f*/ 0x71 0x72 0xA6 0xA7 0x91 0xCE 0x92 0x0F /*98-9f*/
/*a0-a7*/ 0xE6 0x7E 0x73 0x74 0x75 0x76 0x77 0x78 /*a0-a7*/
/*a8-af*/ 0x79 0x7A 0xAD 0xA8 0xD4 0xD5 0xD6 0xD7 /*a8-af*/
/*b0-b7*/ 0x5E 0x9C 0x9D 0xFA 0x9F 0x15 0x14 0xAC /*b0-b7*/
/*b8-bf*/ 0xAB 0xFC 0x5B 0x5D 0xE4 0xFE 0xBF 0xE7 /*b8-bf*/
/*c0-c7*/ 0x7B 0x41 0x42 0x43 0x44 0x45 0x46 0x47 /*c0-c7*/
/*c8-cf*/ 0x48 0x49 0xE8 0x93 0x94 0x95 0xA2 0xED /*c8-cf*/
/*d0-d7*/ 0x7D 0x4A 0x4B 0x4C 0x4D 0x4E 0x4F 0x50 /*d0-d7*/
/*d8-df*/ 0x51 0x52 0xEE 0x96 0x81 0x97 0xA3 0x98 /*d8-df*/
/*e0-e7*/ 0x5C 0xF0 0x53 0x54 0x55 0x56 0x57 0x58 /*e0-e7*/
/*e8-ef*/ 0x59 0x5A 0xFD 0xF5 0x99 0xF7 0xF6 0xF9 /*e8-ef*/
/*f0-f7*/ 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 /*f0-f7*/
/*f8-ff*/ 0x38 0x39 0xDB 0xFB 0x9A 0xF4 0xEA 0xFF /*f8-ff*/
/* PKZIP/400 Translate Tables end */

264

E Spool File Considerations

This appendix contains information on how Smartcrypti handles spool files in
different scenarios that might be helpful to consider in planning for compressing
spool files.

Spool File Selections
Be aware that if you set all of the spool file selection parameters to *ALL, you will
select all spool files on your IBM i system. This is why the default for the user ID is
SFUSER(*CURRENT) to at least limit it to the current user in case a selection is not
filled in correctly.

If a spool file is deleted after the selection but before the actual compression takes
place, the PKZIP job will fail.

SPLF Attributes
When a spool file is selected and the parameter EXTRAFL is coded *YES (the
default), then the extended attributes listed below are stored in archive and can be
viewed with PKUNZIP TYPE(*VIEW) VIEWOPT(*ALL). Also when the spool files are
stored in the archive, the date and time for the file is the spool files creation date
and time and can be viewed with PKUNZIP.

Extended Attributes:

• Description: The spool file description is built as follows:

"Job-Name/User-Name/#Job-Number/Spool-File-Name/Fspool-File-
Number.Suffix" For Example: "MYJOB/BILLS#152681/INVOICE/F0021.SPLF"

• Spool file type: *SCS: SNA Character Stream, *IPDS: An intelligent
printer data stream, *AFPDS: Advanced Function Print Data Stream,
*USERASCII: An ASCII data stream user defined, *LINE: Line data that is
very printer specific, and *AFPDSLINE: Mixed data (line data and AFPDS
data).

• Target file created: Describes the target type file created during
compression. SPLF: Spool Files, TXT: ASCII Text Conversion, and PDF:
Portable Document Format.

• Number of pages contained in the spool file.

 265

An example of the attributes view seen with –VIEWOPT(*ALL) for a spool file
converted to a PDF might appear as follows:

Filename: CRTCM60.PDF
Detected File type: Binary
Created by: PKZIP for IBM i 16.1 PKZIP 2.x compatible
Minimum to Extract: PKZIP 2.0 Or Greater
Compression method: Deflated [Fast]
Date and Time 2009 Oct 17 07:22:00
Compressed size: 2316 bytes
Uncompressed size: 8146 bytes
32-bit CRC value (hex): 40950039
Extended attributes: yes, [Length = 112]
Spool File Type:*SCS, Target File:PDF, Nbr Of pages(3).
SPLF Desc:USER1/USER1/#007892/CRTCM/F0060.PDF.
File Comment:"none"

The preceding view comes from the following spool file:

5722SS1 V5R1M0 Work With Output Queue QPRINT2 in QGPL 11/19/02 14:08:53 Page 1
File User User Data Status Pages Cpy Form Tp Pty File Number Job Number Date
Time
CRTCM USER1 RDY 3 1 *STD 5 60 USER1 007892 10/17/09
07:22:00

PDF Creation Attributes
When creating a PDF, the attributes are also stored in the PDF document to help
trace back what spool file they originated from.

• The date and time of the spool file creation will be the PDF date and time
of creation.

• The author will be the user ID that created the spool file.

• The subject will be made up of the spool file name, number, and the job
(number/user ID/job name).

266

An example of a PDF summary is:

F Contact Information

PKWARE, Inc.
Web Site: www.pkware.com

For Licensing, please contact the Sales Division at 937-847-2374 or email
PKSALES@PKWARE.COM.

For Technical Support assistance, please contact the Product Services Division at
937-847-2687 or visit the Support Web site.

PROBLEM REPORTING
Providing appropriate documentation on the initial call for a problem expedites the
analysis and resolution process. The following sections describe the type of
information that should be supplied for each category of problem.

PROBLEM REPORTING (General)
When reporting a problem regarding Smartcrypti, please be prepared to provide the
following information:

• The displayed output from CALL ziplib/WHATOSV or the details that
WHATOSV provides

• Release level of the operating system

• Release level of PKZIP for IBM i being run

• A description of the process being run and any differentiating
circumstances from job(s) that do run

• A display of the command problem with parameters

• A copy of the output and JobLog from the failing execution

• If run from a CL and practical, please include source listing of the CL

• If PKUNZIP is failing, provide the Output from the following:

 PKUNZIP TYPE(*VIEW) VIEWOPT(*ALL)

http://www.pkware.com/
mailto:PKSALES@PKWARE.COM

• If requested by Technical Support, the display with various tracing options
turned on

• If practical, please include the archive/input file involved in the failing
execution

PROBLEM REPORTING (Licensing)
When reporting a problem regarding licensing, please be prepared to provide the
following information:

• The displayed output from CALL ziplib/WHATOSV

• A copy of the INSTPKLIC command and its parameters

• A copy of the output from the INSTPKLIC job

If the problem occurs in a Smartcrypti job, follow the steps outlined above.

 269

G Options for Running Self-Extracting
Archives

Self-extracting (SFX) archives are executable files that do not require an external
program to extract their contents. To extract files from a self-extracting archive, you
just run the archive.

Self-extracting archives can be created for various UNIX platforms, for Linux, and for
Windows. Windows self-extractors can be created either for command line execution
or to run in the Windows graphical interface.

By default, running a self-extractor extracts all its files. But most self-extracting
archives can be executed with a number of options. Some options set filter
conditions that constrain the set of files to be extracted. Other options affect such
things as whether to extract saved paths with the files, whether to overwrite
similarly named files at the destination, and so on.

This appendix lists options that can be used when executing either command line or
graphical (Windows) self-extractors. In the case of the command line self-extractors,
slightly different sets of options are available for self-extractors created with different
versions of the SFX utility, namely, versions 2.5, 6.1, 10 and 12. The differences are
flagged in the table that describes the options, in this appendix.

To find out the version of a command line self-extractor, run it with the -h option:

myselfextractor.exe -h

This displays information on the screen; it does not extract any files.

Command Line Self-Extractors
This section describes options available with SFX 2.5, 6.1, 10 and 12 command line
self-extractors. These self-extracting archives are created to be executed on the
command line. Specify the options in the command line used to run the self-
extractor.

Usage
The syntax for executing a self-extracting archive is:

<sfx.exe> [options] [files...]

270

where

• <sfx.exe> (without the brackets) is the name of the self-extracting
archive to be executed

• options is a list of options to apply (separated by spaces if more than
one). Prefix each option name with a hyphen “–”. For example: sfx.exe
-c

• files is a list of files or file name specifications (separated by spaces if
more than one) denoting the files to be extracted from the archive. If no
files are specified, all files are extracted.

By default, if no options are used all files are extracted when you run a self-
extracting archive.

Abbreviate Option Names
On the command line, option names can be abbreviated (truncated) as long as they
unambiguously pick out an option. For example, instead of

mysfx.exe –lowercase

you can enter

mysfx.exe –low

but not

mysfx.exe –l

or

mysfx.exe –lo

because the latter two could also refer to other options (license, locale).

Options for Command Line Self-Extractors
The table below lists command line extraction options for SFX 2.5, 6.1, 10 and 12
self-extractors. With a few exceptions, the different SFX versions offer identical
options. The exceptions are flagged in the table.

Some options have suboptions. For example, the after option has a suboption in
which to specify a date. Prefix a suboption value with an equal sign (=) and enter it
immediately after the option (no spaces): -after=12312006.

Option Description

after Extracts files that are newer than or equal to a specified date

Suboptions:

A date [format: mmddyy or mmddyyyy]

Example: mysfx.exe -after=12312006

before Extracts files that are older than a specified date

Suboptions:

A date [format: mmddyy or mmddyyyy]

Example: mysfx.exe -before=12312006

 271

Option Description

console Displays the contents of specified archived files on your screen

Example: mysfx.exe -console readme.txt

directories Recreates directory path, including any sub-directories

Example: mysfx.exe -dir

exclude Excludes specified files from being extracted

Example: mysfx.exe -exclude="*.txt"

extract Extracts only files that satisfy the condition in the suboption.

Suboptions:

all [extract everything in archive]

freshen [extract if newer than an existing destination copy]

update [extract if newer or not in destination directory]

Example: mysfx.exe -extract=freshen

fipsmode

SFX 12 or later

Enable FIPS mode

Example: mysfx.exe -fipsmode

help Displays help screen listing available options

Example: mysfx.exe -help

id (UNIX only)

Preserve original file uid/gid ownership. Must be root/file owner

Suboptions:

Userid [Restore user ownership]

Groupid [Restore group ownership]

None [Do not restore ownership]

All [Same as specifying userid and groupid]

Example: mysfx.exe -id=userid

include Includes specified files for extraction. (This option is ordinarily not necessary. All
specified files are included anyway.)

Example: mysfx.exe -include="*.txt"

keypassphrase

UNIX only

SFX 12 or later

Specifies a passphrase for a private key in the certificate store

Example: mysfx.exe – keypassphrase=secret

larger

SFX 6.1 and later

Extracts files that are the specified size (in bytes) and larger

Suboptions:

<A numerical value (in bytes) that indicates a minimum desired file size>

Example: mysfx.exe -larger=400

license Displays license information

Example: mysfx.exe -license

272

Option Description

locale Reads and/or adjusts the locale variable for date and time format input

Suboptions:

Enable [Use current locale]

Disable [Use US locale]

Example: mysfx.exe -locale=disable -after=12312006

lowercase Changes file names to lower case on extraction

Example: mysfx.exe -lowercase

mask (Windows only)

Removes specified file attributes upon extraction

Suboptions:

archive [mask archive attribute from file(s)/folder(s)]

hidden [mask hidden attribute from file(s)/folder(s)]

system [mask system attribute from file(s)/folder(s)]

readonly [mask read-only attribute from file(s)/folder(s)]

none [do not mask attributes from file(s)/folder(s)]

all [mask all attributes from file(s)/folder(s)]

Example: mysfx.exe -mask=archive,readonly

mask (UNIX only)

Removes specified file permissions upon extraction.

Suboptions:

<Octal mode value of permissions to be removed>

Example: mysfx.exe –mask=077

more Displays output one screen at a time

Example: mysfx.exe -more

newer

SFX 6.1 and later

Extracts only those files that are newer than a specified (calendar) day in the past

Suboptions:

<Number of calendar days ago to set cutoff date>

Example: mysfx.exe -newer=2

noextended

SFX 2.5 and 6.1 only

Suppresses the extraction of extended permission and timestamp attributes

Example: mysfx.exe -noextended

older

SFX 6.1 and later

Extracts only those files that are older than a specified (calendar) day in the past

Suboptions:

<Number of calendar days ago to set cutoff date>

Example: mysfx.exe -older=2

 273

Option Description

overwrite Overwrites existing files

Suboptions:

prompt [prompt before overwriting]

all [always overwrite]

never [never overwrite]

Example: mysfx.exe -overwrite=all

password Specifies a decryption password

Example: mysfx.exe -password=grendel

passphrase

SFX v10 and later

Specifies a decryption passphrase (or password)

Example: mysfx.exe -passphrase=grendel

permission

UNIX only

Sets additional permissions on the files being extracted.

Suboption:

<Octal mode value of permissions to add>

Example: mysfx.exe –permission=111

print

Windows only

Prints the specified archived file

Suboptions:

<print device name> [for example print=lpt1]

Example: mysfx.exe -print=lpt2 readme.txt

silent Suppresses warning messages when extracting

Example: mysfx.exe -silent

smaller

SFX 6.1 and later

Extracts files that are the specified size (in bytes) and smaller

Suboptions:

<A numerical value (in bytes) that indicates a maximum desire file size>

Example: mysfx.exe -smaller=400

sort Sorts files when extracting

Suboptions:

crc [sort by crc value]

date [sort by date of the file]

extension [sort by file extension]

name [sort by file name]

natural [sort in the order that the file was archived]

ratio [sort by compression ratio]

size [sort by file size]

none [do not sort]

Example: mysfx.exe -sort=size

274

Option Description

test Tests the integrity of archived files

Suboptions:

all [test everything in archive]

freshen [test if newer than destination copy]

update [test if newer or not in destination directory]

Example: mysfx.exe -test=all

times Preserves specified file date/time stamp

Suboptions:

access [preserve accessed date/time stamp on extraction]

modify [preserve modified date/time stamp on extraction]

create [preserve created date/time stamp on extraction]

all [preserve all date/time stamps on extraction]

none [do not preserve date/time stamps on extraction]

Example: mysfx.exe -time=access,modify

translate Translate the end of line sequence for give operating system. EBCDIC options
limited to files using Zip Descriptor Word (ZDW) suboptions:

DOS [convert to DOS style line endings]

MAC [convert to MAC style line endings]

unix [convert to unix style line endings]

EBCDIC,NL [convert to EBCDIC NL - 0x15]

EBCDIC,LF [convert to EBCDIC LF - 0x25]

EBCDIC,CRLF [convert to EBCDIC CRLF - 0x0D25]

EBCDIC,LFCR [convert to EBCDIC LFCR - 0x250D]

EBCDIC,CRNL [convert to EBCDIC CRNL - 0x0D15]

Example: mysfx.exe -translate=unix
version Displays SFX version and return appropriate value to the shell

Suboptions:

major [return major version number]

minor [return minor version number]

step [return step or patch version number]

Example: mysfx.exe -version=step

warning Prompts whether to continue after a warning message

Example: mysfx.exe -warning

 275

Windows Graphical Self-Extractors
Some self-extracting archives created for the Windows graphical interface offer
options that control how files are extracted. The options are presented in a dialog
when the self-extracting archive is run. Check boxes control whether the option is
turned on. Choose OK to close the dialog and run the self-extractor with the options
selected.

The table below describes the options that may be offered. Not all options are
offered with every Windows self-extractor.

Option Description

Display messages Displays any warning messages (but not error messages)
in a dialog and suspends extraction until the user clicks a
button to acknowledge.

Create error log Creates an ASCII text file listing any errors encountered
during extraction. The file is named pkerrlog.txt and
is saved in the destination directory.

Create subfolders Recreates subfolders on any saved paths, starting from
the destination folder, when files are extracted.

Create program group Creates a program group of shortcuts and adds it to the
Windows Start menu. Choose the Group… button to
define a program group for the SFX to create.

Run after extraction Specifies a script or application to run or a file to display
after an SFX archive is extracted.

276

Glossary

This glossary provides definitions for items that may have been referenced in the
PKZIP® documentation. It is not meant to be exhaustive. One Web site that provides
excellent source documentation for computing terms is the IBM Terminology site:

http://www-01.ibm.com/software/globalization/terminology/index.jsp

Absolute Path Name

A string of characters used to refer to an object, starting at the highest level
(or root) of the directory hierarchy. The absolute path name must begin with
a slash (/), which indicates that the path begins at the root. This is in
contrast to a Relative Path Name. See also Path Name.

Advanced Encryption Standard (AES)

The Advanced Encryption Standard is the official US Government encryption
standard for customer data.

American Standard Code for Information Interchange (ASCII)

The ASCII code (American Standard Code for Information Interchange) was
developed by the American National Standards Institute for information
exchange among data processing systems, data communications systems,
and associated equipment and is the standard character set used on MS-DOS
and UNIX-based operating systems. In a ZIP archive, ASCII is used as the
normal character set for compressed text files. The ASCII character set
consists of 7-bit control characters and symbolic characters, plus a single
parity bit. Since ASCII is used by most microcomputers and printers, text-
only files can be transferred easily between different kinds of computers and
operating systems. While ASCII code does include characters to indicate
backspace, carriage return, etc., it does not include accents and special
letters that are not used in English. To accommodate those special
characters, extended ASCII has additional characters (128-255). Only the
first 128 characters in the ASCII character set are standard on all systems.
Others may be different for a given language set. It may be necessary to
create a different translation tables (see Translation Table) to create standard
translation between ASCII and other character sets.

American National Standards Institute (ANSI)

An organization sponsored by the Computer and Business Equipment
Manufacturers Association for establishing voluntary industry standards.

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_74/rzaat/as4glos.htm
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_74/rzaat/as4glos.htm

 277

Application Programming Interface (API)

An interface between the operating system (or systems-related program) that
allows an application program written in a high-level language to use specific
data or services of the operating system or the program. The API also allows
you to develop an application program written in a high level language to
access PKZIP data and/or functions of the PKZIP system.

Archive

(1) The act of transferring files from the computer into a long-term storage
medium. Archived files are often compressed to save space.

(2) An individual file or group of files which must be extracted and
decompressed in order to be used.

(3) A file stored on a computer network, which can be retrieved by a file
transfer program (FTP) or other means.

(4) The PKZIP file that holds the compressed/zipped data file.

ASCII

See American Standard Code for Information Interchange.

Binary File

A file that contains codes that are not part of the ASCII character set. Binary
files can utilize all 256 possible values for each byte in the file.

Code Page

A specification of code points for each graphic character set or for a collection
of graphic character sets. Within a given code page, a code point can have
only one specific meaning. A code page is also sometimes known as a code
set.

Command Line

The blank line on a display console where commands, option numbers, or
selections can be entered.

Control Language (CL) Program

A program that is created from source statements consisting entirely of
control language commands.

Cryptography

(1) A method of protecting data. Cryptographic services include data
encryption and message authentication.

(2) In cryptographic software, the transformation of data to conceal its
meaning; secret code.

278

(3) The transformation of data to conceal its information content, to prevent
its undetected modification, or to prevent its unauthorized use.

Current Library

The library that is specified to be the first user library searched for objects
requested by a user. The name for the current library can be specified on the
sign-on display or in a user profile. When you specify an object name (such
as the name of a file or program) on a command, but do not specify a library
name, the system searches the libraries in the system part of the library list,
then searches the current library before searching the user part of the library
list. The current library is also the library that the system uses when you
create a new object, if you do not specify a library name.

Cyclic Redundancy Check (CRC)

A Cyclic Redundancy Check is a number derived from a block of data, and
stored or transmitted with the data in order to detect any errors in
transmission. This can also be used to check the contents of a ZIP archive.
It's similar in nature to a checksum. A CRC may be calculated by adding
words or bytes of the data. Once the data arrives at the receiving computer,
a calculation and comparison is made to the value originally transmitted. If
the calculated values are different, a transmission error is indicated. The CRC
information is called redundant because it adds no significant information to
the transmission or archive itself. It’s only used to check that the contents of
a ZIP archive are correct. When a file is compressed, the CRC is calculated
and a value is calculated based upon the contents and using a standard
algorithm. The resulting value (32 bits in length) is the CRC that is stored
with that compressed file. When the file is decompressed, the CRC is
recalculated (again, based upon the extracted contents), and compared to the
original CRC. Error results will be generated showing any file corruption that
may have occurred.

Data Compression

The reduction in size (or space taken) of data volume on the media when
performing a save or store operations.

Data Integrity

(1) The condition that exists as long as accidental or intentional destruction,
alteration, or loss of data does not occur.

(2) Within the scope of a unit of work, either all changes to the database
management systems are completed or none of them are. The set of
change operations are considered an integral set.

Double-byte Character Set (DBCS)

A set of characters in which each character is represented by 2 bytes.
Languages such as Japanese, Chinese, and Korean, which contain more
symbols than can be represented by 256 code points, require double-byte
character sets. Because each character requires 2 bytes, the typing,
displaying, and printing of DBCS characters requires hardware and programs

 279

that support DBCS. Four double-byte character sets are supported by the
system: Japanese, Korean, Simplified Chinese, and Traditional Chinese. See
also the Single-Byte Character Set (SBCS).

Encryption

The transformation of data into an unintelligible form so that the original data
either cannot be obtained or can be obtained only by decryption.

Extended Attribute

Information attached to an object that provides a detailed description about
the object to an application system or user.

Extended Binary Coded Decimal Interchange Code (EBCDIC)

The Extended Binary Coded Decimal Interchange Code a coded character set
of 256 8 bit characters. EBCDIC is similar in nature to ASCII code, which is
used on many other computers. When ZIP programs compress a text file,
they translate data from EBCDIC to ASCII characters within a ZIP archive
using a translation table.

File Transfer Protocol (FTP)

In TCP/IP, an application protocol used for transferring files to and from host
computers. FTP requires a user ID and possibly a passphrase to allow access
to files on a remote host system. FTP assumes that the transmission control
protocol (TCP) is the underlying protocol.

GNU Privacy Guard (GPG)

A program similar to PGP that follows the OpenPGP standard and is therefore
compatible with PGP. It was originally written for UNIX and UNIX-like
systems, but has been ported to other systems, including Windows and DOS.

GZIP

GZIP (also known as GNU zip) is a compression utility designed to utilize a
different standard for handling compressed file data in an archive.

Integrated File System (IFS)

A function of the operating system that provides storage support similar to
personal computer operating systems (such as DOS and OS/2) and UNIX
systems.

Interactive Job

A job started for a person who signs on to a work station and communicates
(or “converses”) with another computing entity such as a mainframe or IBM i
system. This is in contrast to a Batch Job.

280

IBM i Object

An object that exists in a library on the IBM i system and is represented by an
object on the PC. For example, a user profile is an IBM i object represented
on the PC by the user profile object.

Lempel-Ziv (LZ)

A technique for compressing data. This technique replaces some character
strings, which occur repeatedly within the data, with codes. The encoded
character strings are then kept in a common dictionary, which is created as
the data is being sent.

Library List

A list that indicates which libraries are to be searched and the order in which
they are to be searched. The system-recognized identifier is *LIBL.

Logical Partition (LPAR)

A subset of a single IBM i system that contains resources (such as processors,
memory, and input/output devices). A logical partition operates as an
independent system. If hardware requirements are sufficient, multiple logical
partitions can exist within a system.

New ZIP Archive

A new ZIP archive is the archive created by a compression program when
either an old ZIP archive is updated or when files are compressed and no ZIP
archive currently exists. It may be thought of as the “receiving” archive.
Also see Old ZIP archive.

Null Value

A parameter position within a record for which no value is specified.

n-way Processor Architecture

A processor architecture that provides expandability for future system growth
by allowing for additional processors. To the user, the additional processors
are transparent because they separately manage the work load by sharing
the work evenly among the n-way processors.

Old ZIP Archive

An old ZIP archive is an existing archive which is opened by a compression
program to be updated or for its contents to be extracted. It may be thought
of as the “sending” archive. Also see New ZIP archive.

OpenPGP / RFC 4880

A standard describing files that are compatible with modern versions of Pretty
Good Privacy and other, similar programs. This standard is defined in RFC
4880, which superseded the earlier standard, RFC 2440.

 281

Output Queue

An AS/400 object that contains entries for spooled output files to be written
to an output device.

Packed Decimal Format

A decimal value in which each byte within a field represents two numeric
digits except the far right byte, which contains one digit in bits 0 through 3
and the sign in bits 4 through 7. For all other bytes, bits 0 through 3
represent one digit; bits 4 through 7 represent one digit. For example, the
decimal value +123 is represented as 0001 0010 0011 1111 (or 123F in
hexadecimal).

Passphrase

A sentence, phrase, or random string of characters that may include spaces
and other non-alphabetical characters that serves as a password. The term
password implies a single, recognized name or word from the dictionary. The
term passphrase is meant as encouragement to use longer, more varied
strings as passwords. Longer passwords—or passphrases—consisting of
random strings that contain spaces and other such characters are much more
secure than typical passwords of six to eight characters that use words from
the dictionary.

Path Name

(1) A string of characters used to refer to an object. The string can consist of
one or more elements, each separated by a slash (/), and may begin with
a slash. Each element is typically a directory or equivalent, except for the
last element, which can be a directory or another object (such as a file).

(2) A sequence of directory names followed by a file name, each separated by
a slash.

(3) In a hierarchical file system (HFS), the name used to refer to a file or
directory. The path name must start with a slash (/) and consist of
elements separated by a slash. The first element must be the name of a
registered file system. All remaining elements must be the name of a
directory, except the last element, which can be the name of a directory
or file. See also Absolute Path Name and Relative Path Name.

(4) The name of an object in the Integrated File System. Protected objects
have one or more path names.

Physical File

Describes how data is to be presented to (or received from) a program and
how data is stored in the database. A physical file contains a single record
format and at least one member.

282

Pretty Good Privacy (PGP)

The name of a program originally from the 1980s by Phil Zimmerman. It has
been updated with more modern encryption algorithms, and made to comply
with the OpenPGP standard, RFC 4880.

Production Library

A library which contains objects needed for normal processing. This contrasts
with a Test Library.

QSYS

The library shipped with the IBM i system that contains objects, such as
authorization lists and device descriptions created by a user, and the system
commands and other system objects required to run the system. The system
identifier is QSYS.

Qualified Name

The full name of the library that contains the object and the name of the
object.

Relative Path Name

A string of characters that is used to refer to an object, starting at some point
in the directory hierarchy other than the root. A relative path name does not
begin with a slash (/). The starting point is frequently a user's current
directory. This is in contrast to an Absolute Path Name. See also Path Name.

Return Code

A value generated by operating system software to a program to indicate the
results of an operation by that program. The value may also be generated by
the program and passed back to the operator.

Single-Byte Character Set (SBCS)

A coded character set in which each character is represented by a one-byte
code point. A one-byte code point allows representation of up to 256
characters. Languages that are based on an alphabet, such as the Latin
alphabet (as contrasted with languages that are based on ideographic
characters) are usually represented by a single-byte coded character set. For
example, the Spanish language can be represented by a single-byte coded
character set. See also the Double-Byte Character Set (DBCS).

Source File

A file of programming code that has not yet been compiled into machine
language. A source file can be created by the specification of
FILETYPE(*SRC) on the create command. A source file can contain source
statements for such items as high-level language programs and data
description specifications. Source files maintained on a PC typically use a

 283

.TXT as the extension. On a mainframe, source files are typically found in a
partitioned data set or are maintained within a library management tool.

Spool File

Files that exist in an "output queue" which contain reports to printed on the
AS/400 system. These files along with attributes can then be directed and
transformed to a printer attached to your system.

Stream File

A data file that contains continuous streams of bits such as PC files,
documents, and other data stored in IBM i folders. Stream files are well
suited for storing strings of data such as the text of a document, images,
audio, and video. The content and format of stream files are managed by the
application rather than by the system.

System Library

The library shipped with the operating system that contains objects such as
authorization lists and device descriptions created by a user. Also included
are system commands and other system objects required to run the system.
The system identifier is QSYS.

Translation Table

Translation tables are used by the PKZIP and PKUNZIP programs for
translating characters in compressed text files between the ASCII character
sets used within a ZIP archive and the EBCDIC character set used on IBM-
based systems. These tables may be created and modified by the user as
documented in the User's Guide.

Trigger

A set of predefined actions that run automatically whenever a specified action
or change occurs, for example, a change to a specified table or file. Triggers
are often used to automate environments, such as running a backup when a
certain number of transactions are processed.

Truncate

To cut off or delete the data that will not fit within a specified line width or
display. This may also be attributed to data that does not fit within the
specified length of a field definition.

User Interface

The actions or items that allow a user to interact with (and/or perform
operations on) a computer.

284

ZIP64

ZIP64 is reference to the archive format that supports more than 65,534 files
per archive, uncompressed files greater than 4 Gig and archives greater than
4 Gig.

ZIP Archive

A ZIP archive is used to refer to a single file that contains a number of files
compressed into a much smaller physical space by the ZIP software.

 285

Index

/

/ (root) file system, 62

1

1Step2Tape, 241, 256

3

3DES, 37, 38

A

Absolute Path Name, 276
Advanced Encryption Standard (AES), 38
ADVCRYPT, 90, 173
AES, 276
American National Standards Institute, 276
American Standard Code for Information Interchange

(ASCII), 55, 276
Application Programming Interface, 277
ARCHIVE, 92, 144, 173, 191
Archives, 22, 277

OpenPGP, 222
placement, 252
viewing, 45

ARCHTEXT, 93, 174
AS/400 object, 280
ASCII Armor, 223
AUTHCHK, 93, 145, 192
Authentication, 32, 34
Authority settings, 56
Authorization code, 17
AUTHPOL, 97, 149, 193

B

Binary File, 277
Binary records, 50

C

CAST5, 39
Certificate Authority, 35, 36
Certificates, 35, 36

end entity, 37
root, 37

Code Page, 277
Command Line, 277
Commands, 20, 84, 141, 171, 190
COMPAT, 98
COMPRESS, 174
Compressing, 22

GZIP, 216
SAVF file, 69
spool files, 69

Compression type performance, 251
Contingency keys

OpenPGP, 219
Control Language (CL) Program, 277
CRTLIST, 101, 150
Cryptography, 277
CTYPE, 208
Current Library, 278
CVTDATA, 102, 151, 175, 194
CVTFLAG, 102, 151, 175, 194
CVTTYPE, 102, 151
Cyclic Redundancy Check (CRC), 23, 32, 278

D

Data compression, 278
Data formats, 50
Data integrity, 278
DATEAB, 103
DATETYPE, 103
DBSERVICE, 103
DELIM, 104, 176
DES, 37
DFTARCHREC, 104, 176
DFTDBRECLN, 152, 195
DHDR, 225
Directories, 61
DIRNAMES, 104
DIRRECRS, 105
Document Library Services file system (QDLS), 62,

63
Double-byte Character Set (DBCS), 278
DROPPATH, 152, 195

E

EBCDIC, 55
ENCRYPOL, 99, 108
Encryption, 31, 42, 279

286

algorithms, 37
file name, 43
passphrases, 40
performance, 253
recipient-based, 45
Windows compatibility, 42

ENTPREC, 105, 153, 176, 195
ERROPT, 110
EXCLFILE, 110, 155
EXCLUDE, 110, 156
EXDIR, 156, 196
Extended Attributes, 253, 279
Extended Binary Coded Decimal Interchange Code

(EBCDIC), 279
Extended data, 75
Extracting

OpenPGP files, 190
spool files, 57
to IFS, 55
to QSYS, 53
to SAVF, 69
Windows text files, 52

EXTRAFLD, 111

F

FACILITY, 112, 157, 177, 197
Federal Information Processing Standards (FIPS), 37
File attributes, 52
File name encryption, 43
File names

for saved data, 75
File processing, 60
File selection, 24
File Transfer Protocol (FTP), 279
FILES (command), 111, 158, 178
FILESTEXT, 113
FILETYPE, 113, 158, 178, 198
FNAME, 209
FNE, 114
FTRAN, 115, 159, 179, 198
FTYPE, 208

G

GNU Privacy Guard (GPG), 279
GZIP, 116, 214, 279

extensions, 215
restrictions, 215

H

Hashing algorithms, 32

I

IDEA, 39
IFSCDEPAGE, 116, 159, 179, 199
INCLFILE, 116, 160
INF, 225
Integrated File System (IFS), 61, 62, 68, 279

extracting files, 55
objects, 62

Interactive job, 279
Interactive performance, 251
International Data Encryption Algorithm (IDEA), 39
iPSRA, 73, 256
ISRTPATH, 180

L

Large file considerations, 27
Lempel-Ziv (LZ), 280
Library file system, 60, 62

extracting files to, 53
Library List, 280
License key, 17
Link objects, 62
List files, 68, 101, 110, 116, 140, 150, 155, 160, 168

creating, 258
Logical Partition, 280
LOGLVL, 209

M

MASTER_RECIPIENT
OpenPGP, 219

MD5, 32
Microsoft Windows

NT Server file system, 63
OAEP processing, 42
text files, 52

MODE, 225
MSGTYPE, 117, 160, 180, 199

N

Network File System (NFS), 63
New ZIP Archive, 280
NSSRULES, 118, 161
Null Value, 280
n-way Processor Architecture, 280

O

OAEP processing, 42
Old ZIP Archive, 280
Open Systems file system, 63
OpenPGP, 171, 190, 280

compared to X.509, 218
contingency keys, 219
creating archive, 222
keyrings, 35, 219
viewing archive, 223

Optical file system (QOPT), 62, 65
OUTF, 225
OUTFILE, 77
OUTPUT, 77
Output queue, 281
OVERWRITE, 162, 200
Overwriting

current SAVF file, 69

P

Packed Decimal Format, 281

 287

Passphrase, 40, 45, 140, 189, 281
GZIP, 216

PASSWORD, 119, 163, 181, 200, 209
Passwords. See Passphrase
Path, 55
Path name, 61, 281

absolute, 61
relative, 62

Performance considerations, 251
PGPDEF, 181, 200
PGPKEYRDEF, 221
PGPRULES, 181, 201
PGPSET, 220
Physical file, 281
PKARMOR, 224
PKOVRTAPF, 121
PKOVRTAPI, 164
PKPGPU, 190
PKPGPZ, 171
PKQRYCDB, 207, 230
PKSCNPGP, 228
PKUNZIP (Command), 141

details, 144
PKZIP (Command), 84

details, 90
PKZIP for DOS, 21
PKZSPOOL, 84
PKZTABLES, 262, 263
Portable Document Format

creation, 265
POSIX, 63
Pretty Good Privacy (PGP), 282, See also OpenPGP
Private key, 35
Production Library, 282
Public key, 35, 37
Public Key Infrastructure (PKI), 35

Q

QDLS, 62, 63
QFileSvr.400, 63
QNetWare, 63
QNTC, 63
QOpenSys, 63
QOPT, 62, 65
QSYS, 53, 60, 62, 282

through IFS, 67
Qualified Name, 282

R

Radix-64, 223
RC4, 39
Records, 50
Relative Path Name, 282
Restore command, 78

iPSRA, 166
Return Code, 282
RFC 4880, 280
Root file system, 62
RSTIPSRA, 166
RUNTYPE, 207

S

Save/Restore application (iPSRA), 73
SAVF, 21, 69
SecureZIP

cross platform compatibility, 28
invoking, 20

SecureZIP Partner, 232
Self-extracting archives (SFX), 50, 122
SELFXTRACT, 122
SFFORM, 126
SFJOBNAM, 127
SFQUEUE, 126, 166
SFSTATUS, 127
SFTARGET, 128
SFTGFILE, 128
SFUSER, 125
SFUSRDTA, 126
SHA-1, 32
SIGNERS, 130, 185
Signing, 33
SIGNPOL, 133, 186
Source file, 282
SPLFILE, 129
SPLNBR, 129
SPLUSRID, 166
Sponsor Distribution Package, 233
Spool files, 26, 283

compressing, 69
considerations, 264

STOREPATH, 136, 187
Stream file, 62, 283
System information, 17
System library, 283

T

Tape archiving. See 1Step2Tape
Tape device file, 241
Temporary archive files, 49
Text files, Windows, 52
Text records, 50
TMPPATH, 136
TRAN, 137, 167, 187, 205
Translation tables, 260, 283
Trigger, 283
Triple DES, 37
Truncate, 283
TYPARCHFL, 137, 167, 188, 205
TYPE, 139, 168, 205, 225
TYPFL2ZP, 139, 168, 188, 206
TYPLISTFL, 140, 168

U

UNIX, 63
USASCII, 262, 263
User Interface, 283
User-Defined File System (UDFS), 63

V

VERBOSE, 140, 169, 188, 206

288

VIEWOPT, 169
VIEWSORT, 169
VPASSWORD, 140, 189

W

WHATOSV, 17
Windows NT Server file system, 63

X

X.509, 35

compared to OpenPGP, 218
XPG, 63

Z

ZIP archives, 22, 48, 50, 284
file exclusion, 26
file selection, 24

ZIP64, 27, 252, 284

	Preface
	About this Manual
	Conventions Used in this Manual
	Related Publications
	Related IBM Publications
	Related Information on the Internet
	Release Summary
	New Features 16.1.0
	New Features 16.0.0
	New Features 14.0.1
	New Features 14.0
	New Features 10.0.5
	New Features 10.0
	Command Changes & Defaults 16.0
	PKZIP/PKZSPOOL
	PKUNZIP
	PKCFGSEC

	New Commands 14.0
	PKPGPZ
	PKPGPU
	PKARMOR

	Command Changes & Defaults 14.0
	PKZIP/PKZSPOOL
	PKUNZIP
	PKCFGSEC
	PKQRYCDB

	New Commands 10.0.5
	Command Changes & Defaults 10.0.5
	PKZIP
	PKUNZIP
	PKCFGSEC

	Migration Notes 14.0
	Migration Notes 10.0.5
	New Commands 10.0
	Command Changes & Defaults 10.0
	PKZIP
	PKUNZIP
	PKCFGSEC

	Migration Notes 10.0
	New Features 9.0
	New Commands 9.0
	Command Changes & Defaults 9.0
	PKZIP
	PKUNZIP

	New Products 8.2
	New Features 8.2
	New Commands 8.2
	Command Changes & Defaults 8.2
	PKZIP
	PKUNZIP

	User Help and Contact Information

	1 Getting Started
	PKZIP and PKUNZIP Commands
	PKPGPZ and PKPGPU Commands
	Basic Features of PKZIP for IBM i and Smartcrypt for IBM i
	Initializing the License
	Evaluation Period
	Release Licensing
	Show System Information
	Applying a License Key or Authorization Code
	Reporting the License

	PKZIP and Smartcrypt for IBM i Grace Period
	Invoking PKZIP for IBM i or Smartcrypt for IBM i
	Differences from PKZIP or Smartcrypt on Other Platforms
	Use of SAVF Method
	Data Compression
	ZIP Archives
	Cyclic Redundancy Check
	Encryption
	File Selection and Name Processing
	Primary File Selection Inputs
	File Exclusion Inputs
	Input ZIP Archive Files
	SPOOL File Selecting

	Large Files Considerations
	Large File Support Summary
	Large File Support File Capacities

	Cross Platform Compatibility
	Restrictions

	2 Introduction to Data Security
	Encryption
	Data Integrity
	National Security Systems Classification Support (Suite B)
	Digital Signature Validation
	Digital Signature Source Validation
	Example - Sign Files and Archive with Private Keys
	Example - Authenticate Signed Files and Archive

	Public-Key Infrastructure and Digital Certificates
	Public-Key Infrastructure (PKI)
	How the Keys Are Used

	X.509
	OpenPGP Keyrings
	Digital Certificates
	Certificate Authority (CA)
	Private Key (X.509 or OpenPGP)
	Public Key (X.509 or OpenPGP)
	Certificate Authority and Root Certificates

	Types of Encryption Algorithms
	FIPS 46-3, Data Encryption Standard (DES)
	Triple DES Algorithm (3DES)
	FIPS-197, Advanced Encryption Standard (AES)
	Comparison of the 3DES and AES Algorithms
	RC4
	CAST5 (aka CAST-128)
	IDEA

	Key Management
	Passphrases and PINS
	Recipient Based Encryption
	Integrity of Public and Private Keys
	OEM Cryptographic Extensions
	GZIP 96-bit Passphrase Encryption/Decryption
	AE-2 Passphrase Encryption/Decryption

	Data Encryption
	Operating System Levels
	Windows Compatibility
	What is File Name Encryption?

	User Encryption Examples
	Zip Compress File(s) and Write to an Archive File
	Display the Contents of an Encrypted Archive File
	Incorrect Passphrase Use
	Compress File with Public Digital Certificates
	Decrypting File with Private Key Certificates
	Encryption Using LDAP Search for Recipients

	3 ZIP Files
	“Old” ZIP Archive
	“Temporary” Archive File
	“New” ZIP Archive
	Self-Extracting Archive
	Data Format - Text Records vs. Binary Records
	File Attributes
	PC Shared Drives Format

	4 File Extraction Process
	Extracting Files to the QSYS Library File System
	Authority Settings

	Extracting Files to the IFS
	Path Considerations
	Changing the path(s)
	File Type Considerations
	Authority Settings

	Extracting zSeries Variable Length Records (RDW/ZDW)
	Extracting zSeries Native IO Records
	Extracting Spool Files

	5 IBM i File Processing Support
	QSYS (Library File System)
	QSYS Summary

	IFS (Integrated File System)
	Directories and Current Directory
	Path and Path Names
	Stream Files
	Other IFS Objects
	File Systems in the IFS
	Document Library Services File System (QDLS)
	Creating an Archive in a QDLS Personal Folder

	Optical File System (QOPT)
	Processing Archive on a CD (QOPT)
	Compressing files from a CD (QOPT)

	Using QSYS.LIB via the Integrated File System Interface
	IFS Summary

	SAVF
	Compressing a SAVF file
	Extracting Records into a SAVF file
	Overwriting Current SAVF File

	Compressing Spool Files
	Compressing Spool Files Examples

	6 IBM i PKWARE Save/Restore Application Feature (iPSRA)
	Save/Restore Command Overview
	Saving Data
	Restoring Data
	Syntax
	File Names Used for Saved Data
	Extended Data in Archive

	Notes and Restrictions
	Using OUTPUT and OUTFILE with the Save Commands
	How to Use the Save Application Feature
	How to Use the Restore Application Feature
	Database Considerations for Save and Restore
	Sample Jobs
	iPSRA Example 1
	iPSRA Example 2
	iPSRA Example 3
	iPSRA Example 4
	iPSRA Example 5
	iPSRA Example 6
	iPSRA Example 7

	7 PKZIP Command
	PKZIP Command Summary with Parameter Keyword Format
	PKZIP Command Keyword Details

	8 PKUNZIP Command
	PKUNZIP Command Summary with Parameter Keyword Format
	PKUNZIP Command Keyword Details

	9 PKPGPZ “PKWARE OpenPGP ZIP” Command
	PKPGPZ Command Summary with Parameter Keyword Format
	PKPGPZ Command Keyword Details

	10 PKPGPU “PKWARE OpenPGP UNZIP” Command
	PKPGPU Command Summary with Parameter Keyword Format
	PKPGPU Command Keyword Details

	11 PKQRYCDB “Query Cert Database” Command
	PKQRYCDB Command Summary with Parameter Keyword Format
	PKQRYCDB Command Keyword Details

	12 Processing with GZIP
	What Is GZIP?
	Why Use GZIP?
	PKZIP and Smartcrypt for z/OS Implementation Notes for GZIP
	GZIP Restrictions
	GZIP Extensions
	Processing GZIP Archives
	Special Note on GZIP Passphrases

	Sample GZIP Processing
	Compressing a file

	13 Processing with OpenPGP
	Overview: OpenPGP vs. X.509
	Preparing to use OpenPGP Keys
	Setting Up OpenPGP Keyrings
	Configuring Contingency Keys in OpenPGP Mode
	Configuration Settings Unique to OpenPGP Processing

	Creating OpenPGP Archives
	Viewing OpenPGP Files
	Opening OpenPGP Files
	Working with OpenPGP Files Encoded with “ASCII Armor”
	PKARMOR Command Summary with Parameter Keyword Format
	PKARMOR Command Keyword Details

	OpenPGP Support Exclusions
	Signed Message Files

	Examining OpenPGP File Structure with PKSCNPGP
	Scan an OpenPGP File with PKSCNPGP
	Uncompressed/Unencrypted (Literal-only Packet 11) Report
	Compressed, Encrypted (both recipient and passphrase) and Signed Report

	Scan an OpenPGP Keyring with PKQRYCDB
	Public Keyring Report (ref. “gpg –k”)
	Private Keyring Report (ref. “gpg –K”)
	Invalid Keyring Report

	14 PKWARE PartnerLink: SecureZIP Partner
	About SecureZIP Partner for IBM i
	If You Are a Sponsor: Sign the Central Directory

	Terms and Acronyms Used in This Chapter
	PKWARE SecureZIP Partner Program: Overview
	Decrypting and Extracting Sponsor Data (Read Mode)
	Creating an Archive for a Sponsor

	Requirements
	License
	Operating Environment
	Configuring as a Partner for a Sponsor

	Functional Overview
	General Restrictions
	SecureZIP Partner IVP Examples

	Read Mode (UNZIP) Processing
	Restrictions
	Archive Authentication Settings
	Decryption Certificate Selection
	File Signature Authentication Certificate Selection

	Write Mode (ZIP) Processing
	Restrictions
	Encryption Certificate Selection

	15 1Step2Tape Archive Tape Processing
	Creating archive files to tape
	Notes and Suggestions for Writing Archives to Tape

	Reading archive files from tape:
	Notes and Suggestions for Reading Archives from Tape

	Setting Up or Changing a Tape Device File for PKZIP or PKUNZIP
	Output Tape Device File for PKZIP
	Tape Device Requirements for Writing Archives

	Input Tape Device File for PKUNZIP
	Tape Device Requirements for Reading Archives

	Sample - Creating an Archive Directly to Tape
	Sample - Extracting Files from an Archive Written Directly from Tape
	How to Copy a Tape Archive to a Disk File

	A Performance Considerations
	Interactive Performance
	Compression Type Performance
	Data Type Selection
	Archive Placement (IFS or in a Library)
	ZIP64 Processing Considerations
	Encryption Performance
	Extended Attributes Selections

	B CLP Samples
	PKSAMP01 – Override for Stdout and Stderr to an OUTQ
	PKSAMP02 – Compress all files in TESTLIB with PKZIP
	PKSAMP03 – Capture Last SPLF in Job
	PKSAMP04 – SBMJOB to Capture all SPLF of Job
	PKSAMP05 – Strong Encrypt Calling Password
	PKSAMP05A – Password CL Store for PKSAMP06
	PKSAMP06 – Creating archives with 1Step2Tape Old
	PKSAMP07 – 1Step2Tape with View/Test Tape Input Archive Files
	PKSAMP08 – Run iPSRA to SAVLIB and Capture Resulting Spool Files
	PKSAMP09 – Lib Encryption to Tape with Multi Steps
	PKSAMP10 – 1Step2Tape and iPSRA Multiple Libraries
	PKSAMP11 – Change Ownership of PKWARE Objects

	C List Files
	Creating List Files
	Using List Files as Input

	D Translation Tables
	Standard Code Page Support with Tables
	International Code Page Support
	Translation Table Layout
	Creating New Translation Table Members
	Example of PKZTABLES (USASCII) Translation Table

	E Spool File Considerations
	Spool File Selections
	SPLF Attributes
	PDF Creation Attributes

	F Contact Information
	PKWARE, Inc.
	PROBLEM REPORTING
	PROBLEM REPORTING (General)
	PROBLEM REPORTING (Licensing)

	G Options for Running Self-Extracting Archives
	Command Line Self-Extractors
	Usage
	Abbreviate Option Names

	Options for Command Line Self-Extractors

	Windows Graphical Self-Extractors

	Glossary
	Index

